Подсистема учета готовой продукции цеха металлизации "Оскольского электрометаллургического комбината"

Система транспорта и склады. Характеристика ленточных весов. Описание системы визуализации технологического процесса. Структура подсистемы, алгоритмическое и техническое обеспечение. Анализ и охрана труда. Оценка экономической эффективности проекта.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 31.05.2010
Размер файла 416,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ СТАЛИ И СПЛАВОВ

ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ СТАРООСКОЛЬСКИЙ ФИЛИАЛ

Факультет Технологический

Кафедра АиПЭ

Специальность 2102

ДИПЛОМНОМНЫЙ ПРОЕКТ

на тему: Разработка системы автоматизации компрессорного цеха

АННОТАЦИЯ

Объектом автоматизации является аммиачная холодильная установка в компрессорном цехе ОАО МК “АВИДА”.

Цель данного дипломного проекта: разработка системы автоматизированного управления компрессорного цеха за счет внедрения промышленного контроллера.

Внедрение промышленного контроллера позволит:

достичь экономии электроэнергии;

увеличить срок службы оборудования холодильной установки;

поддерживать заданное давление в системе “ледяной воды”;

увеличить надежность системы хладоснабжения в целом;

облегчить работу машиниста компрессорного цеха.

Техническим обеспечением служит следующее оборудование:

промышленный контроллер ЭК-2000 (ЗАО "Эмикон");

преобразователь давления САПФИР 22ДИ ("Манометр" г. Москва).

СОДЕРЖАНИЕ

  • ВВЕДЕНИЕ
  • 1. РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ
    • 1.1 КРАТКАЯ СПРАВКА О ПРЕДПРИЯТИИ
    • 1.2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
    • 1.2.1 УЧАСТОК ПРИЕМКИ МОЛОКА
    • 1.2.2 АППАРАТНЫЙ ЦЕХ
    • 1.2.3ТВОРОЖНЫЙ ЦЕХ
    • 1.2.4 ЛАБОРАТОРИИ
    • 1.2.5 УЧАСТОК ЗАКВАСКИ
    • 1.2.6 ЦЕХ СУШКИ МОЛОКА
    • 1.2.7 УЧАСТОК РОЗЛИВА
    • 1.2.8 КОМПРЕССОРНЫЙ ЦЕХ
    • 1.3 ИСХОДНОЕ СОСТОЯНИЕ СИСТЕМЫ АВТОМАТИЗАЦИИ КОМПРЕССОРНОГО ЦЕХА
    • 1.4 ПОСТАНОВКА ЗАДАЧИ НА РАЗРАБОТКУ АСУТП
    • 1.5 РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ
    • 1.5.1 ОПИСАНИЕ РАЗРАБАТЫВАЕМЫХ КОНТУРОВ РЕГУЛИРОВАНИЯ
    • 1.5.2 РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ КОНТУРОВ РЕГУЛИРОВАНИЯ
    • 1.6 АЛГОРИТМ РЕГУЛИРОВАНИЯ УРОВНЯ ЖИДКОГО АММИАКА В ЦИРКУЛЯЦИОННОМ РЕССИВЕРЕ
    • 1.7 ВЫБОР И ОБОСНОВАНИЕ ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ
    • 1.7.1 ВЫБОР ПРЕОБРАЗОВАТЕЛЯ ДАВЛЕНИЯ
    • 1.7.2 ВЫБОР КОНТРОЛЛЕРА
    • 1.7.4 ВЫБОР ИНЖЕНЕРНОЙ СТАНЦИИ
    • 1.8 ВЫБОР СИСТЕМНОГО ОБЕСПЕЧЕНИЯ
    • 1.8.1 КРАТКОЕ ОПИСАНИЕ СИСТЕМЫ CONT-Designer
  • 2. ОХРАНА ТРУДА
    • 2.1 АНАЛИЗ УСЛОВИЙ ТРУДА
    • 2.1.1 ОПАСНЫЕ ПРОИЗВОДСТВЕННЫЕ ФАКТОРЫ
    • 2.1.2 ВРЕДНЫЕ ПРОИЗВОДСТВЕННЫЕ ФАКТОРЫ
    • 2.2 РАССЛЕДОВАНИЕ И УЧЕТ НЕСЧАСТНЫХ СЛУЧАЕВ НА ПРОИЗВОДСТВЕ
    • 2.3 МЕРОПРИЯТИЯ ПО ОХРАНЕ ТРУДА В КОМПРЕССОРНОМ ЦЕХЕ
    • 2.3.1 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПЕРЕД НАЧАЛОМ РАБОТЫ
    • 2.3.2 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ВО ВРЕМЯ РАБОТЫ
    • 2.3.3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПО ОКОНЧАНИИ РАБОТЫ
  • 4. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ
    • 4.1 ОРГАНИЗАЦИОННАЯ СТРУКТУРА УПРАВЛЕНИЯ КОМПРЕС-СОРНЫМ ЦЕХОМ
    • 4.2 РАСЧЕТ ФОНДА ЗАРАБОТНОЙ ПЛАТЫ
  • СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Современное развитие промышленного производства молочных продуктов сопровождается все более широким применением автоматизированных систем управления технологическими процессами. Предпосылками этого являются

концентрация производства

рост мощностей предприятий

применение поточных и непрерывных способов производства

оснащение предприятий новым высокопроизводительным оборудованием

наличие современных технических средств автоматизации.

Широкое применение автоматизированных систем управления обуславливается значительным экономическим эффектом, который достигается благодаря

обеспечению заданных качеств вырабатываемой продукции независимо от субъективных факторов

уменьшению потерь ценных продуктов

снижению трудоемкости процессов производства

и т.д.

Наряду с локальными системами управления отдельными операциями и основными технологическими процессами широко внедряются также централизованные системы управления на базе мини- и микро-ЭВМ. Опыт показал, что применение локальных систем управления отдельными операциями эффективно для небольших заводов и при малых объемов производства.

Применение систем управления отдельными технологическими процессами эффективно на предприятиях средней мощности при непрерывно-поточных процессах, больших объемов производства на высокопроизводительном оборудовании.

В ряде случаев системы управления характеризуются применением технических средств и устройств управления, построенных по принципу “жесткой логики”, т.е. по заранее заданной схеме коммутации аппаратуры и элементов без применения управляющих комплексов. Автоматические управляющие воздействия здесь запрограммированы по времени. Причем все функции управления выполняются техническими средствами . За оперативным персоналом остается лишь выполнение вспомогательных функций. Обычно такие системы проектируются вместе со всем комплексом предприятия.

Системы управления, построенные на основе использования устройств программного и логического управления с “жесткой логикой” функционирования, весьма консервативны к изменению структуры и алгоритмов управления. Необходимость модифицировать систему в процессе эксплуатации приводит к значительным затратам времени и материальных ресурсов. Любая поправка в алгоритме управления, например в следствии изменения технологии вырабатываемых продуктов, требует перемонтажа электрических и пневматических блоков и изменение их числа. Поэтому в последнее время во многих случаях автоматизированные системы управления применяются в наиболее прогрессивной форме, отличающейся тем, что вместо устройств программного и логического управления с жесткой логикой функционирования используются управляющие вычислительные комплексы на основе мини- или микро-ЭВМ и микропроцессорные контроллеры. Использование программируемых технических средств автоматизации дает возможность легко осуществлять необходимые изменения в системе управления путем перепрограммирования без монтажных переделок. Эта форма является наиболее эффективной при управлении технологическими процессами.

Применение систем управления с использованием средств управления на основе микропроцессорной техники обусловлено универсальностью, высокой надежностью в эксплуатации, возможностью изменения программ функционирования. Стоимость таких систем ниже стоимости аналогичных систем, созданных на основе традиционных технических средств автоматического управления.

Характерной особенностью современных автоматизированных систем управления в молочной промышленности является то, что они осуществляются на основе типовых алгоритмов и математических моделей с учетом особенностей данной отрасли.

1. РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ

1.1 КРАТКАЯ СПРАВКА О ПРЕДПРИЯТИИ

Старооскольский молочный комбинат, преобразовавшийся в 1993 году в Открытое акционерное общество “Осколмолоко”, а в 1997 году переименованное в АО Молочный комбинат “Авида” - ведущее предприятие молочной промышленности в Белгородской области.

Молочный комбинат строился с учетом бурного развития крупнейших в Европе двух Горно-обогатительных комбинатов и металлургического комбината и ростом численности населения в горняцких городах Старый Оскол и Губкин.

Пущенный в эксплуатацию в 1989 году, комбинат оснащен современным отечественным и импортным оборудованием. В 1997 году проведена модернизация оборудования в отдельных цехах. На участке расфасовки готовой продукции установлены разлив машины фирмы “Тетра-Пак”, другие современные автоматы по упаковке молочной продукции.

Молочный комбинат располагает большими резервами по переработке молока и сегодня его мощность 150 т/смену. Но предприятие имеет возможность перерабатывать 300 тонн молока в смену.

В настоящее время предприятие выпускает 12 наименований продуктов переработки молока и продолжает работу по расширению ассортимента выпускаемой продукции.

Кроме продуктов из молока производятся и другие пищевые продукты: майонез, маргарин, соки натуральные 100%-е, напитки и нектары фруктовые.

АО Молочный комбинат “Авида” имеет сеть магазинов розничной торговли и оптовый магазин, где широкий ассортимент: молоко питьевое с различным содержанием жира, стерилизованное молоко с длительным сроком хранения, диетические продукты, творог и творожные изделия, сметана, масло сливочное, молоко цельное сухое различной жирности, молоко сухое обезжиренное и др.

Продукция Молочного комбината “Авида” известна жителям многих городов России.

Старооскольский Молочный комбинат “Авида” сотрудничает с рядом зарубежных фирм, является дилером некоторых предприятий, участвует в семинарах, проводимых на базе передовых предприятий.

В состав молочного комбината “Авида ” входят следующие подразделения

участок приёмки молока

аппаратный цех

творожный цех

лаборатории

участок закваски

цех сушки молока

участок розлива

компрессорный цех

административные подразделения

транспортный цех

вспомогательные службы.

1.2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

1.2.1 УЧАСТОК ПРИЕМКИ МОЛОКА

Приёмка молока осуществляется в проездном помещении, состоящем из четырёх проездов. Каждый проезд состоит из трёх отделений

перемешивания и взятия проб

откачки молока

мойки автоцистерн.

После определения количества молоко, отвечающее требованиям ГОСТа, проходит через охладители цельномолочного производства и поступает в резервуары для промежуточного хранения. Не сортовое молоко подается в аппаратный цех. Некондиционное молоко поступает в творожный цех.

1.2.2 АППАРАТНЫЙ ЦЕХ

1.2.2.1 ПРОИЗВОДСТВО ПАСТЕРИЗОВАННОГО МОЛОКА

Молочная смесь с жирностью 2,5% пастеризуется на установке ALFA-LAVAL температуре 76. Далее полученное молоко охлаждается в танке (ёмкость с “рубашкой” (двойными стенками)) до температуры 5.

Готовое молоко разливается в пакеты на установках “Тетра-Пак” и “ Тетра-Рекс”.

1.2.2.2 ПРОИЗВОДСТВО КЕФИРА

Молоко с содержанием жира 3,5% нормализуется до 2,5%. Затем оно пастеризуется и гомогенизируется при температуре 97. Далее полученная смесь охлаждается в танке до температуры 25 и заквашивается, после чего оставляется в покое на 12 часов. При достижении требуемой кислотности производится охлаждение полученного кефира на охладителе до 6.

1.2.2.3 ПРОИЗВОДСТВО СМЕТАНЫ

Сырое молоко сепарируется на сливкоотделителе-молокоочистителе для получения сливок, которые далее нормализуются обезжиренным молоком до 20% содержания жира. На трубчатом пастеризаторе полученные сливки пастеризуются и гомогенизируются. В танке сливки охлаждаются до температуры 30и заквашиваются, после чего оставляются в покое на 6 часов. При достижении нужной кислотности полученная сметана охлаждается до 6.

1.2.2.4 ПРОИЗВОДСТВО РЯЖЕНКИ

Сырое молоко закачивается в ванну, в которой оно пастеризуется и томится при температуре 99. После чего производится охлаждение до 42 и заквашивание. При достижении нужной кислотности полученная смесь охлаждается до 6.

1.2.3 ТВОРОЖНЫЙ ЦЕХ

1.2.3.1 ВЫРАБОТКА МАСЛА

Охлажденные сливки из резервуара подаются в пастеризованную установку, где пастеризуются и охлаждаются до температуры созревания и поступают в резервуары. По окончания процесса созревания сливки подогреваются и направляются в маслоизготовитель.

Для промывки масляного зерна промывочная вода охлаждается на охладителе. Пахта, полученная при выработке масла, охлаждается на охладителе и поступает в резервуар для промежуточного хранения. Далее пахта через счетчик направляется в резервуар цельномолочного производства для нормализации цельномолочной продукции.

Готовое масло расфасовывают на автомате в пакеты по 0,2 кг и в ящики по 20 кг.

Ящики с маслом закладываются на поддоны и электропогрузчиком перевозятся в холодильную камеру для хранения.

1.2.3.2 ПРОИЗВОДСТВО ТВОРОГА 9% ЖИРНОСТИ ТВОРОГА НЕЖИРНОГО И ТВОРОЖНЫХ СЫРКОВ

Выработка творога 9% жирности и нежирного творога предусмотрена традиционным способом по молдавской технологии с самопрессованием и охлаждением в ваннах сетках.

Сырое нормализованное молоко насосами подаётся в пастеризсванно-охла-дительную установку для подогрева, очистки в сепараторе, пастеризации и охлаждения до температуры заквашивания.

Пастеризованное нормализованное и обезжиренное молоко поступает в танки или ванны для подсквашивания.

В ваннах производится заквашивание и сквашивание молока, разрезание и отваривание сгустка, слив сыворотки.

Творожный сгусток сливается из ванн в самоходную тележку с насосом, в котором установлена ванна-сетка.

Заполненная тележкой ванна-сетка, затем электроталью транспортируется к ванне для охлаждения.

Снижение температуры творожного сгустка осуществляется циркулирующей холодной сывороткой, которая охлаждается в пластинчатым охладителе.

После охлаждения творожный сгусток переносится в следующую ванну для самопрессования, затем в ванну-нормализатор для нормализации по жирности и влаге.

Готовый творог насосом подаётся в автомат для расфасовки в пакеты, на весы для расфасовки во фляги.

Часть творога 9% жирности подается в коллоидную мельницу, затем в месильную машину для составления сырковой массы.

Сырковая масса насосом подаётся в автомат для расфасовки.

1.2.4 ЛАБОРАТОРИИ

В лаборатории готовится первичная закваскам, производятся анализы выпускаемой продукции.

1.2.5 УЧАСТОК ЗАКВАСКИ

Проектом предусмотрено три заквасочного отделения

отделение маточной закваски

отделение кефирной закваски

заквасочное отделение для производства закваски на творог, сметану.

Нормализованное или обезжиренное молоко поступает в заквасочники для приготовления производственной закваски и в заквасочники для приготовления маточной закваски.

В заквасочниках происходит повторная пастеризация, выдержка, охлаждение молока до температуры заквашивания, сквашивания и охлаждения закваски.

Проектом предусмотрена возможность приготовления закваски на стерилизованном молоке. Для получения стерилизованного молока установлены автоклав и установка для высокотемпературной пастеризации.

Готовая закваска насосами подается в танки.

1.2.6 ЦЕХ СУШКИ МОЛОКА

Из аппаратного цеха насосом нормализованное молоко подается в резервуары для промежуточного хранения, откуда оно подается на установку сгущения молока. Полученная сгущенка направляется на установку сушки молока. Сухое молоко расфасовывают в мешки по 25 кг.

1.2.7 УЧАСТОК РОЗЛИВА

На участке расфасовки готовой продукции установлены разлив машины фирмы “Тетра-Пак”, другие современные автоматы по упаковке молочной продукции.

1.2.8 КОМПРЕССОРНЫЙ ЦЕХ

Компрессорный цех аммиачной холодильной установки расположен в главном производственном здании.

Проектом предусмотрены системы охлаждения, характеристики которых приведены в таблице №1.

Таблица №1

Характеристики систем охлаждения

п.п.

Наименование системы

Значение системы

Температура,

Характеристика систем охлаждения

Кипения хладо-

агента

Хладоносителя

1

Система “ледяная вода”.

Охлаждение продукта в технологических аппаратах.

-8

+2

Открытая, с установкой аккумулятора холода.

2

Система рассольного охлаждения.

Охлаждение продуктов в технологических аппаратах и холодильных камерах с температурой от 0до +10.

-15

- 8

Закрытая, с применением кожухотрубных испарителей.

3

Система непосредственного кипения аммиака.

Охлаждение продукта в холодильных камерах с температурой

-15 .

-25

-

Закрытая, с применением кожухотрубных конденсаторов.

В качестве хладоагента принят аммиак. В качестве хладоносителя - “ледяная вода” и рассол с , плотностью 1,23 кгл при температуре замерзания - 25,7.

Для уменьшения коррозии применяется пассиватор-гексаметофосфат натрия.

Охлаждение камер - воздушное с применением подвесных воздухоохладителей типа ВОП.

Маслоснабжение компрессоров осуществляется централизованно от маслонасосной установки. В состав маслонасосной установки входят

- два рессивера

- два шестерёнчатых насоса для грязного и чистого масла

- для сбора масла от аппаратов предназначен маслосборник.

Выпуск воздуха из аммиачной системы происходит через воздухоотделитель АВ-4

Для конденсации паров аммиака установлены кожухотрубные конденсаторы КТГ - 800

Конденсация паров аммиака в кожухотрубных конденсаторах осуществляется водой системы оборотного водоснабжения

В состав систем охлаждения входят агрегаты винтовые компрессорные одноступенчатые типа 2А 350-7, которые предназначены для работы в составе промышленных холодильных установок и обеспечивают температуры от +5 до -30 при температуре конденсации до +40. Ряд 2А 350-7 состоит из четырех модификаций и по температуре кипения распределен следующим образом

2А 350-7-0 и 2А 350-7-1 работают от +5 до -15

2А 350-7-2 и 2А 350-7-3 работают от -10 до -30.

Агрегат 2А 350-7(см. рис.1) работает в схеме одноступенчатого сжатия по следующему циклу

Образовавшиеся в испарительной системе(приборы охлаждения, аккумуляторы холода) пары аммиака через запорный вентиль, обратный клапан и газовый фильтр поступают в винтовой компрессор и вместе с подаваемым в полость маслом сжимаются до давления конденсации. Масло служит для охлаждения паров, смазки пар трения и уплотнения зазоров между корпусам и роторами.

Из компрессора маслоаммиачная смесь поступает в трехступенчатый сепаратор (маслоотделитель), где происходит освобождение паров аммиака от частиц масла.

Пары аммиака через запорный вентиль и обратный клапан поступают в кожухотрубный конденсатор и после сжижения в испарительную систему. Описанный цикл непрерывно повторяется.

Работа составных частей агрегата 2А 370-7

а). В сепараторе (маслоотделителе) происходит отделение частиц масла от паров аммиак за счет резкого изменения направления движения смеси, уменьшения его скорости и осаждения капель масла на сетках. Выделившееся масло по патрубкам стекает в маслосборник. На сепараторе установлены два предохранительных клапана. Клапан на линии, соединяющий сепаратор со всасывающей стороной компрессора (газовым фильтром), предназначен для защиты компрессора от превышения разности давлений нагнетания и всасывания. Второй клапан защищает сепаратор от повышения рабочего давления, этот клапан имеет сброс давления во внешний трубопровод.

б). В маслоохладителе кожухотрубного типа двухсекционном происходит охлаждение масла оборотной водой.

в). Схема циркуляции масла

насос засасывает масло из маслосборника через сетчатый фильтр грубой очистки и подает его в маслоохладитель. После масло поступает в двухступенчатый фильтр тонкой очистки. После первой ступени фильтрации масло делится на две части

одна поступает в рабочую полость компрессора и на разгрузку золотника

остальная часть после очистки в сетчатых элементах поступает в распределительный коллектор и далее на смазку подшипников, в уплотнение вала и на шпонку золотника.

Отработанное масло стекает во всасывающую камеру компрессора и вместе с парами аммиака попадает в рабочую камеру.

Между нагнетательным и всасывающим трубопроводом маслонасоса установлен перепускной клапан РДМ, который защищает насос от перегрузки. Клапан отрегулирован на давление открытия 6 . Перепад между давлением всасывания и нагнетания должно быть не менее 1,5 .

11 - трубопроводы аммиака

14 - трубопроводы масла

28 - трубопроводы с маслоаммиачной смесью

1 - трубопроводы оборотной воды

КО - обратный клапан

КП - предохранительный клапан

Ф1 … Ф4 - фильтры

ВН - вентиль регулировочный

ВНС - соленоидный вентиль

Н - маслонасос

КР - клапан редукционный

ИМ - исполнительный механизм

М1…М2 - электродвигатели

Т1…Т3 - термометр

ДРТ1…ДРТ3 - датчик-реле температуры

РКС - датчик-реле разности давлений

РД1… РД2 - датчик-реле давления

МН1…МН3 - мановакууметр.

Система “ледяной воды” (см. рис.2)предназначена для охлаждения продукта в технологических аппаратах

в танках

в ваннах-сетках

в пластинчатом охладителе

и другом технологическом оборудовании охлаждения продукции.

Отепленная “ледяная вода” возвращается в баки-аккумуляторы холода под остаточным давлением из безнапорных аппаратов. Возвращенная “ледяная вода ” в баках-аккумуляторах охлаждается до температуры и насосами подаётся потребителям. Охлаждается вода за счёт кипения аммиака в секциях батарей, помещённых в баках аккумуляторах. В период минимальных тепловых нагрузок на поверхности батарей происходит наращивание льда, который в последующем используется для охлаждение отепленной “ледяной воды”. Пары аммиака из секций батарей через отделитель жидкости отсасываются компрессором, где пары сжимаются от давления всасывания до давления нагнетания и через маслоотделитель подаются на горизонтальный кожухотрубный конденсатор. Сконденсированная жидкость сливается в линейный рессивер, откуда остаточным давлением подается через фильтр, вентиль соленоидный мембранный и регулирующий вентиль и поступает в секции батарей бака-аккумулятора. Уровень жидкости в секциях поддерживается автоматически.

1о - трубопровод оборотной воды

1л - трубопровод “ледяной воды”

11ж - жидкий аммиак

11г - пары аммиака

ПРУ - поплавковое реле уровня

М - электродвигатель

РД - датчик реле давления

МН - мановакуумметр

Т - термометр

ДРТ - датчик-реле температуры

Н - насос “ледяной воды”

ВНС - соленоидный вентиль

ВН - вентиль регулировочный

В - клапан регулирующий.

Система непосредственного кипения аммиака (см. рис.3)принята для охлаждения камер с готовой продукцией. Пары аммиака из приборов охлаждения поступают в циркуляционный рессивер, откуда они отсасываются аммиачным компрессором и через горизонтальный кожухотрубный конденсатор поступает в линейный рессивер. Из линейного рессивера через вентиль соленоидный мембранный и регулировочный вентиль жидкий аммиак поступает в циркуляционный рессивер, откуда аммиачными насосами через регулировочный вентиль и вентиль соленоидный мембранный подаётся на приборы охлаждения.

Первоначальное заполнение и пополнение системы аммиаком предусматривается как из аммиачных цистерн, так и из баллонов.

Рис.3 т Функциональная схема системы непосредственного кипения аммиака

Рассольная система охлаждения необходима для поддержания температуры -8 в технологических аппаратах (танках, охладителях) и холодильных камерах с продукцией. Охлажденный в трубном пространстве кожухотрубных испарителей рассол подается потребителям, откуда отепленным возвращается в бак для сбора рассола. Из этого бака забирается центробежными насосами, которые нагнетают через отстойник в испаритель для охлаждения. Таким образом, цикл охлаждения рассола повторяется.

Пары аммиака из межтрубного пространства кожухотрубного испарителя поступает в отделитель жидкости. После отделителя жидкости пары поступают на всасывание компрессоров. Дальнейший путь следования паров аммиака аналогичен схеме принятой для системы “ледяной воды”.

В данный момент рассольная система охлаждения не применяется.

1.3 ИСХОДНОЕ СОСТОЯНИЕ СИСТЕМЫ АВТОМАТИЗАЦИИ КОМПРЕССОРНОГО ЦЕХА

Проектом автоматизации холодильной установки разработан на основании задания технологического отдела и технологической планировки главного производственного корпуса.

1.3.1 ПОДСИСТЕМА АВТОМАТИЗАЦИИ \

АГРЕГАТОВ СЕРИИ 2А 370-7

Система автоматизации агрегатов предназначена для управления агрегатами, регулирования холодопроизводительности, защиты от аварийных ситуаций.

Перечень контрольно-измерительных приборов и приборов защитной автоматики приведен в таблице №2.

Таблица №2

Характеристики контрольно-измерительных приборов и приборов защитной автоматики

Наименование прибора

Марка прибора

Контролируемые параметры

Место установки датчика

Величина уставки

Мановакуум-

метр

МВТП-160А-

- 2,4МПа x 1,5

Давление всасы-вания

Газовый фильтр

-

Мановакуум-метр

МВТП-160А-

- 2,4МПа x 1,5

Давление нагнетания

Сепаратор

-

Мановакуум-метр

МВТП-160А-

- 2,4МПа x 1,5

Давление масла на нагнетании насоса

Нагнетательный маслопровод

-

Датчик-реле давления

Д220А-13

Давление нагнетания

Давление всасы-вания

Сепаратор

Газовый фильтр

16

0,7

Датчик-реле разности давлений

РКС-1-ОМ5-

-03А

Разность давлений на нагнетании маслонасоса и в сепараторе

Нагнетательный маслопровод и сепаратор

1,5

Датчик-реле температуры

ТР-ОМ5-09

Температура нагнетания

Сепаратор

95

Датчик-реле температуры

ТР-ОМ5-04

Температура масла высокая

Нагнетательный маслопровод

55

Датчик-реле температуры

ТР-ОМ5-03

Температура масла низкая

Нагнетательный маслопровод

15

Соленоидный вентиль

СВМ-40

-

Водопровод

-

Устройство

А-80

-

-

Блок приборов

-

Устройство А-80 предназначено для контроля технологических процессов охлаждения, для управления работой поршневых и винтовых одноступенчатых холодильных машин, для защиты от недопустимых отклонений технологических параметров и выдачи аварийной сигнализации.

Устройство рассчитано для работы при

температура окружающего воздуха от 1 до 45 и относительной влажности до 80%

повышенной влажности окружающего воздуха до 98% при температуре 36

воздействии вибрационных нагрузок в диапазоне частот от 5 до 30 Hz с ускорением 15.

Питание устройства осуществляется напряжением переменного тока 220V

частоты 50 или 60Hz.

Функционирование устройства предусматривает три режима работы

местный

автоматический

полуавтоматический.

Устройство управляет следующими механизмами холодильных машин

пускателем компрессора (I=10A)

соленоидными вентилями СВ1…СВ6 мощностью 40 V•A каждый

двигателем рассольного насоса (I=2A)

полупроводниковым реле уровня мощностью 5 V•A.

Устройство обеспечивает

выдачу во внешнюю цепь (обесточенными контактами, обеспечивающими коммутацию тока 0,22 А напряжением 220 V) следующих сигналов

а) включение компрессора

б) аварии

в) в блок регулирования производительности

г) блокировки с выдержкой (15±3)s

д) резерва

аварийное отключение компрессора и световую сигнализацию с запоминанием в полуавтоматическом режиме работы по сигналам датчиков

- давление масла

- давление нагнетания

- температуры нагнетания

- давления всасывания

- уровень жидкости

- температура масла (высокая)

аварийное отключение компрессора и световую сигнализацию с запоминанием в местном режиме работы по сигналам датчиков

- давление масла

- давление нагнетания

- световую сигнализацию по сигналу датчика

- температура масла (низкая)

пуск и остановку компрессора в местном режиме работы кнопками

ПУСК и СТОП

первичный пуск и остановку компрессора в полуавтоматическом режиме

кнопками ПУСК и СТОП, дальнейшее включение и отключение компрессора по сигналу пускателя рассольного насоса

первичный пуск и остановку компрессора в автоматическом режиме

кнопками ПУСК и СТОП, дальнейшее включение и отключе-

ние компрессора по сигналу от датчика температуры

самозапуск компрессора после исчезновения питания после питания в автоматическом режиме

снятие аварийной сигнализации кнопкой ПУСК одновременно с за-

пуском компрессора после устранения аварии

на время пуска компрессора блокировку защиты по температуре масла (высокой) и давления масла на (15±3)s

селекция сигналов защиты по длительности и задержку отключения компрессора на время 0,1s при срабатывании одной из защит.

Система автоматизации агрегатов серии 2А 370-7 обеспечивает

ручной пуск и остановку масляного насоса (с индивидуального кнопочного поста)

управление и работу агрегата при трех режимах автоматическом - “А”, полуавтоматическом - “ПА”, местном - “М”

блокировку на пуск агрегата по включению водяного насоса в режимах “А”, “ПА”

пуск агрегата с устройства А-80 в последовательности пуск масляного насоса, пуск компрессора через выдержку времени (15±3)с

регулирование холодопроизводительности от температурного режима, установленного в испарительной системе - двухпозиционное 100-0% пуском

управление соленоидным вентилем на водопроводе на водопроводе

аварийную остановку агрегатов в режимах “А”, “ПА” при следующих отклонениях рабочих параметров

а). понижение давления всасывания

б). повышение давления нагнетания

в). понижение разности давлений нагнетании маслонасоса и в сепараторе

г). повышение температуры нагнетания

д). повышение и понижение температуры масла

е). повышение уровня жидкости в отделителе жидкости.

остановку агрегата в режимах “А”, “ПА” при отключении водяного или защит в пусковой аппаратуре электродвигателей маслонасоса, компрессора

световую сигнализацию на устройстве А-80 при включении питания, аварийных значениях рабочих параметров, по которым произошла остановка или не произошло пуска, причем при низкой температуре масла горят “информационный сигнал”, “температура масла” и аварийный сигнал “температура масла”, при высокой температуре аварийный сигнал “температура масла”

возможность подключения дистанционной сигнализации о работе или остановке агрегата

остановку агрегата с устройства А-80 или аварийного “СТОП” в следующей последовательности

а). остановка электродвигателей компрессора и масляного насоса

б). отключение и закрытие соленоидного вентиля на водопроводе оборотной воды.

СИСТЕМА “ЛЕДЯНАЯ ВОДА”

Система включает в себя четыре агрегата марки А370-7-1, бак-аккумулятор холода с отделителями жидкости 200 ОЖГ и четыре насоса “ледяной воды”.

Схемой автоматизации предусмотрены следующие противоаварийные защиты компрессора

а) от понижения давления всасывания и повышения давления нагнетания

б) от повышения температуры нагнетания

в) от понижения разности давления масла в системе смазки и давления в картере компрессора

г) защита от повышения температуры масла

д) защита от понижения температуры масла

е) защита от повышения уровня аммиака в отделителе жидкости.

При срабатывании любой из защит останавливается компрессор и зажигается соответствующая сигнальная лампа на пульте на пульте управления. Последующий пуск возможен только после ликвидации причин аварийного останова.

Система автоматизации обеспечивает работу агрегата в полуавтоматическом, и ручном режимах работы. Ручной режим предназначен только для обкатки машины и выполнении наладочных работ. При полуавтоматическом режиме включены все виды блокировок, защит и осуществляется автоматическое питания испарителя.

ПОДСИСТЕМА НАСОСЫ “ЛЕДЯНОЙ ВОДЫ”

Проектом предусмотрено пять насосов “ледяной воды”, один из них резервный. Насосы служат для подачи воды в теплообменные аппараты. Каждый насос может быть как основным так и резервным. При давлении, менее включается резервный насос с подачей светового и звукового сигналов на щит управления насосами.

ПОДСИСТЕМА АККУМУЛЯТОР ХОЛОДА

В системе “ледяной воды” работает аккумулятор холода с отделителями жидкости 200 ОЖГ. Уровень аммиака контролируется реле уровня полупроводниковое реле уровня (ПРУ-5). Проектом предусматривается поддержание рабочего уровня путем подключения соленоидного вентиля подачи аммиака через усилительный блок реле ПРУ-5 и аварийное отключение компрессоров при верхнем аварийном уровне аммиака в отделителях жидкости. Аварийный уровень контролируется с помощью двух реле уровня, дублирующих друг друга. Датчики этих реле устанавливаются на отделителях жидкости. На щит выведена сигнализация температуры “ледяной воды” .

СИСТЕМА НЕПОСРЕДСТВЕННОГО КИПЕНИЯ АММИАКА

В системе работают компрессорный агрегат А-370-7-2, два аммиачных насоса, рессивер циркуляционный. Система работает на камеры охлаждения.

Схема противоаварийной защиты включает

а). защита от понижения давления всасывания

б). защита от повышение давления нагнетания

в). защита от понижение разности давлений нагнетании маслонасоса и в сепараторе

г). защита от повышение температуры нагнетания

д). защита от повышение и понижение температуры масла

е). защита от повышения уровня аммиака в циркуляционном рессивере.

ПОДСИСТЕМА АММИАЧНЫЕ НАСОСЫ

Проектом принято два аммиачных насоса работающих в системе непосредственного кипения аммиака. Каждый насос может быть как основным, так и резервным. При давлении включается резервный насос подачей светового и звукового сигналов на щит управления. Предусмотрен контроль уровня жидкого аммиака в полости двигателя с помощью реле уровня ПРУ-5.

ПОДСИСТЕМА ЦИРКУЛЯЦИОННЫЙ РЕССИВЕР

Проектом принят рессивер типа 1,5. В циркуляционном рессивере контролируются

а) верхний аварийный уровень - 70% ( отключение компрессоров, подача светового и звукового сигналов на щит управления)

б) верхний предельный уровень - 50%(световая сигнализация на щите управления)

в) регулирование рабочего уровня - 30% ( путём подключения соленоидного вентиля, подачи аммиака через усилительный блок ПРУ-5)

г) нижний аварийный уровень - 15% (отключение аммиачных насосов, подача светового и звукового сигналов на щит управления)

ПОДСИСТЕМА КАМЕРЫ ОХЛАЖДЕНИЯ

Для измерения температуры воздуха в камерах служат термометры сопротивления, подключенные к логометру, установленному на щите управления. Управление температуры воздуха осуществляется с помощью моста в комплекте с термометрами сопротивления и вентилями соленоидными мембранными (СВМ), открывающими подачу аммиака. При работе камер в режиме охлаждения включаются подвесные воздухоохладители (ВОП) и открываются СВМ подачи хладоносителя в камеры. В камере предусмотрены кнопки безопасности “человек в камере”.

ПОДСИСТЕМА ЛИНЕЙНЫЙ РЕССИВЕР

Проектом предусмотрены два линейных рессивера типа 5РД. Контроль верхнего уровня и нижнего уровней аммиака осуществляется реле уровня ПРУ-5 с подачей светового и звукового сигналов на щит сигнализации. Рабочий уровень аммиака в линейном рессивере - 50%, верхний уровень - 80%, нижний уровень - 20%.

АВАРИЙНОЕ ОТКЛЮЧЕНИЕ

Проектом предусмотрено аварийное отключение всех двигателей с включением вентиляции в случае критической концентрации аммиака в компрессорном цехе.

ПОДСИСТЕМА ГРАДИРНЯ

В проекте дана пятисекционная градирня для понижения температуры оборотной воды, которая идет на охлаждение аммиачных компрессоров, паров аммиака в кожухотрубном конденсаторе. При температуре 25включаются вентиляторы градирни. Контроль температуры ведётся логометром.

ПОДСИСТЕМА ДРЕНАЖНЫЕ НАСОСЫ

В насосной станции оборотной воды проектом предусмотрены два насоса для откачки воды из дренажного приямка. На основании задания сантехнического отдела выполнена автоматизация работы этих насосов по уровню воды в дренажном приямке. Каждый насос может быть как основным, так и резервным. При достижении 50% уровня воды насос включается, отключается - при 10%. Уровень в баке контролируется регулятором “ЭРСУ-3”, установленным на щите управления насосами. Управление работой насосов местное и автоматическое.

1.4 ПОСТАНОВКА ЗАДАЧИ НА РАЗРАБОТКУ АСУП

Цель: автоматизация технологического процесса управления оборудованием аммиачной холодильной установки, реализация за счет внедрения промышленного контроллера в компрессорном цехе.

АСУП компрессорного цеха должна решать следующие задачи:

автоматическое управление работой агрегата винтового компрессорного

автоматическое регулирование давления в системе “ледяной воды”;

автоматическое регулирование давления в системе “ледяной воды”;

автоматическое регулирование уровня в циркуляционном рессивере;

обеспечение бесперебойной работы компрессорного цеха;

экстренная выдача информации в аварийных ситуациях;

улучшение условий труда обслуживающего персонала.

1.5 РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Приступая к наладке любой автоматической системы, необходимо прежде всего определить математическую модель объекта.

Существует три основных подхода к построению математической модели объектов управления:

1-ый подход: получение структуры математической модели и её параметров на основе изучения процессов происходящих в объекте. К таким объектам можно отнести следующие:

ёмкости заполняемые жидкостями, сыпучим веществами или газами, выходная величина: уровень или давление газа;

электродвигатели, выходная величина: скорость или угол поворота вала;

редукторы. Выходная величина: угол поворота.

2-ой подход: получение математической модели в результате обработки экспериментальных данных полученных в результате функционирования объекта.

3-ий подход: комбинированный подход, когда структура модели и часть параметров определяется на основе изучения процессов в объекте, а остальные параметры оцениваются по результатам обработки экспериментальных данных.

В компрессорном цехе объектами автоматизации являются

агрегат винтовой компрессорный

насосы “ледяной воды”

линейный и циркуляционный рессивера

аммиачные насосы

аккумуляторы холода

камеры хранения готовой продукции

и т.д.

Из перечисленных выше объектов автоматизации для дипломного проектирования можно выделить контуры регулирования

регулирование давления “ледяной воды”

регулирование температуры в камере хранения готовой продукции

регулирование уровня жидкого аммиака в циркуляционном рессивере.

Применим 3-ий подход к построению математической модели, получение математической модели на основе изучения процессов происходящих в объекте и по экспериментальным данным.

1.5.1 ОПИСАНИЕ РАЗРАБАТЫВАЕМЫХ КОНТУРОВ РЕГУЛИРОВАНИЯ

РЕГУЛИРОВАНИЕ ДАВЛЕНИЯ “ЛЕДЯНОЙ ВОДЫ”

Рис.4. Функциональная схема контура регулирования ледяной воды

воздействие на регулирующий вентиль

электрический сигнал

трубопровод “ледяной воды”

неизменяемая часть

регулирующий клапан.

Наличие давления “ледяной воды” фиксируется и измеряется преобразователем электрическим Сапфир - 22ДИ (рабочее давление 3 ), который выдает электрический сигнал на регулятор. Далее регулятор в зависимости от величины давления выдает управляющее воздействие на исполнительный механизм. Исполнительный механизм уже непосредственно с регулирующим клапаном (ЕСПА 02 ВП) регулирует подачу “ледяной воды”.

РЕГУЛИРОВАНИЕ ТЕМПЕРАТУРЫ В КАМЕРЕ ХРАНЕНИЯ ГОТОВОЙ ПРОДУКЦИИ

Рис. 5. Функциональная схема контура регулирования температуры в камере хранения готовой продукции

регулирование производительности компрессора

электрический сигнал

трубопровод аммиака

неизменяемая часть контура регулирования.

Датчик температуры (термометр сопротивления ТСМ-6114) фиксирует величину температуры в камере хранения готовой продукции (рабочая температура 2). Далее электрический сигнал поступает на регулятор, который в зависимости от значения температуры выдает управляющее воздействие на исполнительный механизм (МЭМ-10Б). Исполнительный механизм воздействует на золотник, с помощью которого регулируется производительность компрессора и тем самым изменяется температура в камере.

РЕГУЛИРОВАНИЕ УРОВНЯ ЖИДКОГО АММИАКА В ЦИРКУЛЯЦИОННОМ РЕССИВЕРЕ

Рис. 6. Функциональная схема контура регулирования уровня жидкого аммиака в циркуляционном рессивере

электрический сигнал

- пары аммиака

- жидкий аммиак.

Заполнение аммиаком в циркуляционного рессивера фиксируется поплавковыми реле уровня (ПРУ - 5), с которых электрический сигнал подается на регулятор. Далее регулятор в зависимости от уровня аммиака выдает управляющее воздействие на соленоидный вентиль, т.е. закрыть или открыть. Предусмотрен аварийный останов аммиачных насосов при аварийном уровне аммиака (15% от общего объема).

1.5.2 РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ КОНТУРОВ РГУЛИРОВАНИЯ

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ КОНТУРА РЕГУЛИРОВАНИЯ ДАВЛЕНИЯ “ЛЕДЯНОЙ ВОДЫ”

Определим неизменяемую часть контура регулирования:

1. Определим передаточную функцию исполнительного механизма

Исполнительный механизм (ИМ) постоянной скорости может находиться только в трёх состояниях: перемещение регулирующего органа (РО) с постоянной скоростью S, неподвижность, перемещение РО в обратную сторону с постоянной скорость S. Без учёта времени разгона и торможения статическая характеристика d/dt = f(Z) исполнительного механизма постоянной скорости с пусковым устройством является существенно нелинейной.

Рис.7 Статическая характеристика ИМ постоянной скорости

где,

скорость перемещения РО;

зона нечувствительности пускового устройства;

сигнал на выходе пускового устройства.

Её нельзя линеаризовать с достаточной для практических расчётов точностью при различных диапазонах изменения входного сигнала Z.

Однако такой исполнительный механизм может иметь достаточно близкие к линейным характеристики при релейно-импульсном изменении входного сигнала.

Подадим на вход исполнительного механизма с постоянной частотой вращения импульсы напряжения Zн (см. рис. 7) с периодом следования Тпер и скважностью

= tимп / Тпер , (1)

где, Тпер = tимп + tпауз (2)

Рис. 8. Характер перемещения ИМ постоянной скорости (б) при поступлении на его вход серии постоянных импульсов (а)

tимп - длительность импульсов;

tпауз - длительность пауз.

Во время поступления импульса исполнительный механизм будет перемещать РО с постоянной скоростью d/dt = S = tg (рис. 8, б). Во время пауз ИМ будет неподвижен.

При поступлении на ИМ серии импульсов характер его перемещения будет иметь вид, представленный на рис. 8, б.

Средняя скорость перемещения будет иметь равна:

d/dt = tg = tимп S/T , (3)

или с учётом (1)

d/dt = S (4)

Преобразовав (4) по Лапласу, получим

Wим(p) = M/(p)/Г(p) = S/p (5)

Таким образом исполнительный механизм можно представить интегрирующим звеном с передаточной функцией:

W(s) = 1/sТим (6)

где, Тим - постоянная времени исполнительного механизма постоянной скорости, время полного хода (расчётное время полного перемещения ИМ) которое по паспарту равно Тим = 24с.

2. Определим уравнение регулирующего клапана.

Исходя из графика (рис. 9) характеристики регулирующего клапана получаем уравнение

tg = Q/S, (7)

тогда уравнение регулирующего клапана

W(s) = tg (8), т.е. W(s) = К (9)

Рис. 9. Характеристика регулирующего клапана

где, S - перемещение регулирующего органа

Q - расход “ледяной воды” через регулирующий клапан.

3. Определение передаточной функции насосов “ледяной воды”

Давление на выходе насосов “ледяной воды” достигает нужной величины не мгновенно, а спустя некоторое время. По экспериментальным данным это время в среднем составляет 1,5 с. Можно сделать вывод, что компрессор является инертным объектом. Давление на выходе будет нарастать по зависимости полученной экспериментально и приведённой на рис. 10.

По графику (рис. 10), можно идентифицировать данный объект как апериодическое звено 1-го порядка с передаточной функцией

W(s) = K/(Ts + 1 ). (10)

T = Tн / 3 = 0,5с (11)

где, T - постоянная времени насоса “ледяной воды”

Рис. 10. Характеристика насоса “ледяной воды”

Tн - время за которое давление достигнет заданной величины (по экспери-

ментальным данным - 1,5 с).

K - коэффициент усиления насоса “ледяной воды”.

К = = 0,45 (12)

где, - максимальное давление при полностью открытом регулировочном клапане, (по экспериментальным данным - 4,5 )

- расход “ледяной воды” через полностью открытый регулиро-вочный клапан (из паспорта - 10 ).

Передаточная функция объекта имеет вид:

W(s) = 0,45/ (0,5s +1) (13)

Постоянной времени (время задержки) измерительного устройства (преобразователем электрическим Сапфир - 22ДИ) можно пренебречь, так как, оно очень мало по сравнению с постоянной времени объекта T, и не учитывать его в качестве звена в неизменяемой части объекта.

4. Выбор и настройка регулятора.

Исходя из графика статической характеристики ИМ постоянной скорос-ти (рис. 7) был выбран трехпозиционный регулятор. Путем моделирования в пакете “SIAM” были подобраны настройки регулятора (рис.11).

Рис.11. Математическая модель трехпозиционный регулятор

Таким образом получаем математическая модель контура регулирования “ледяной воды” (рис. 12).

Рис. 12. Математическая модель контура регулирования “ледяной воды”

сигнал задания

сигнал на выходе контура регулирования

сигнал рассогласования.

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ КОНТУРА РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ В КАМЕРЕ ХРАНЕНИЯ ГОТОВОЙ ПРОДУКЦИИ

Определим неизменяемую часть контура регулирования:

1.Определение передаточной функции исполнительного механизма

Производим аналогично тому, как это производилось в контуре регулирования давления “ледяной воды”

исполнительный механизм можно представить реальным интегрирующим звеном с передаточной функцией:

W(s) = 1/s Тим (14)

где, Тим - постоянная времени исполнительного механизма постоянной скорости, время полного хода (расчётное время полного перемещения ИМ) которое по паспарту равно Тим = 400с.

2.Определим передаточную функцию аммиачного компрессора.

Исходя из графика (рис. 13) характеристики аммиачного компрессора получаем уравнение Р/S = tg, (15)

тогда уравнение аммиачного компрессора W(s)= tg (16), т.е. W(s) = К=1 (17)

Рис. 13. Характеристика аммиачного компрессора

где, S - перемещение золотника

Р - давление после аммиачного компрессора.

3. Определим передаточную функцию камеры хранения готовой продук-ции.

По экспериментальным данным получена характеристика камеры хранения готовой продукции, которая приведена на рис. 14.

Рис. 14. Характеристика камеры хранения готовой продукции

- температура в камере хранения готовой продукции

t - время.

По графику (рис. 14), можно идентифицировать данный объект как апериодическое звено 1-го порядка с передаточной функцией


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.