Реконструкция горизонтально-расточного станка повышенной жесткости

Модернизация горизонтально-расточного станка модели 2А622 (снижение трудоемкости, повышение производительности). Проект новой шпиндельной бабки; новой стойки, повышающей жесткость станка; нового шпиндельного узла. Измененение кинематики коробки скоростей.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 07.07.2009
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

Введение

1 Обзор состояния вопроса и постановка задачи на дипломное проектирование

1.2 Горизонтально-расточные станки выпускаемые в РФ и других странах

1.3 Пути и цели модернизации станков

1.4 Постановка задачи на дипломное проектирование

2 Реконструкция горизонтально-расточного станка модели 2А622

2.1 Обоснование реконструкции станка

2.2 Компоновка станка повышенной жесткости

2.3 Обоснование повышенной производительности станка (режимы резания)

2.3.1 Выбор режимов резания

2.3.2 Определить скорость главного движения резания (м/мин), допускаемую режущими свойствами резца по формуле

2.3.3 Составляющие силы резания

2.3.4 Мощность резания рассчитаем по формуле

2.4 Расчет коробки скоростей

2.4.1 Выбор приводного электродвигателя

2.4.2 Определение общего диапазона регулирования привода

2.4.3 Определение общего числа ступеней скорости

2.4.4 Выбор конструктивных вариантов привода

2.4.5 Определение числа возможных кинематических вариантов

2.4.6 Определение максимальных передаточных отношений по группам передач

2.5 Выбор вариантов структурной формулы

2.5.1 Выбор первого варианта

2.5.2 Выбор второго варианта

2.5.3 Выбор третьего варианта

2.5.4 Выбор четвертого варианта

2.6 Построение структурной сетки

2.7 Построение графика частот вращения

2.8 Определение передаточных отношений в группах передач

2.9 Определение чисел зубьев передач

2.10 Определение крутящих моментов на валах коробки скоростей

2.11 Расчет прямозубой эвольвентной передачи

2.11.1 Определение модуля зубчатой передачи расчетом на контактную выносливость зубьев

2.11.2 Определение модуля зубчатой передачи расчетом на выносливость зубьев при изгибе

2.11.3 Определение стандартного модуля зубчатой передачи

2.12 Расчет и построение свертки коробки скоростей

2.13 Расчет и подбор подшипников

2.14 Расчет сечения сплошного вала

3 Проектирование шпиндельного узла

3.1 Тепловой расчет шпиндельного узла

3.2 Динамический расчет шпиндельного узла

4 Проектирование стойки станка

4.1 Компоновка стойки

4.2 Расчет направляющих

5 Проектирование шпиндельной бабки

5.1 Компоновка шпиндельной бабки

6 Статический и динамический расчет стойки и шпиндельной бабки

6.1 Статический расчет стойки и шпиндельной бабки

6.1.1 Статические характеристики

6.1.2 Динамические характеристики стойки и шпиндельной бабки

5 Расчет экономического эффекта от реконструкции горизонтально-расточного станка мод. 2А622

5.1 Снижение трудоемкости

5.2 Расчет необходимого количества оборудования и его загрузки

5.2.1 Расчетное количество рабочих мест

5.2.2 Принятое количество рабочих мест

5.3 Расчет годовой производительности единицы оборудования и ее изменения

5.3.1 Годовая производительность единицы оборудования

5.3.2 Коэффициент роста производительности оборудования

5.4 Расчет капитальных вложений в оборудование

5.5 Расчет технологической себестоимости годового выпуска изделий

5.5.1 Расчет годовой заработной платы с отчислениями

5.5.2 Расчет годовых затрат на электроэнергию

5.5.3 Расчет годовых амортизационных отчислений для оборудования

5.5.4 Расчет годовых затрат на текущий ремонт оборудования

5.5.5 Расчет годовых затрат на инструмент

5.5.6 Расчет технологической себестоимости годового выпуска изделий

5.6 Штучная технологическая себестоимость

5.7 Экономия от снижения себестоимости

5.8 Расчет приведенных затрат

5.8.1 Годовые приведенные затраты

5.8.2 Удельные приведенные затраты

5.9 Годовой экономический эффект

6 Безопасность труда

6.1 Анализ условий труда

6.2 Мероприятия по улучшению условий труда

6.3 Расчет защитного заземления

6.4 Возможные чрезвычайные ситуации

6.4.1 Расчет времени эвакуации при пожаре

Заключение

Список использованных источников

ПРИЛОЖЕНИЕ А (справочное)

ПРИЛОЖЕНИЕ Б (справочное)

ПРИЛОЖЕНИЕ Г (справочное)

ПРИЛОЖЕНИЕ Д (справочное)

ПРИЛОЖЕНИЕ Е (справочное)

ПРИЛОЖЕНИЕ З (справочное)

ПРИЛОЖЕНИЕ П (справочное)

Введение

Важнейшими условиями увеличения роста промышленной продукции является развитие электрификации, комплексной механизации и автоматизации, внедрение новейшего высокопроизводительного оборудования и передовой технологии, широкая замена и модернизация устаревшего оборудования.

Осуществление этих задач в машиностроительной металлообрабатывающей промышленности связанно в первую очередь с повышением производительности основного технологического оборудования - металлорежущих станков.

Работа над созданием и совершенствованием средств автоматизации должна развиваться в двух направлениях: создание средств автоматизации выпускаемого и действующего в настоящее время оборудования с целью повышения его эффективности; создание новых автоматизированных технологических комплексов, где увязаны вопросы повышения производительности, надежности, точности выполнения работ, а также уровня автоматизации операций с необходимой и экономически оправданной гибкостью для быстрой переналадки с целью адаптации к изменяющимся производственным условиям.

Для обеспечения повышения производительности труда в машиностроении большое значение имеет более полное использование действующего парка станков, в первую очередь за счет его модернизации и реконструкции.

Работами, проведенными в промышленности в последние годы, практически доказана возможность значительного повышения эксплуатационных показателей действующих станков путем несложной их переделки.

Однако подавляющая часть работ в области модернизации оборудования проводилась только в направлении повышения быстроходности и мощности. Вопросами механизации и автоматизации рабочего цикла станков уделялось мало внимания. В результате производительность станков повысилась недостаточно, значительно возрос удельный вес затрат времени на выполнение вспомогательных и подготовительно - заключительных работ. Основным направлением модернизации действующего парка станков для обеспечения его наибольшей производительности должно явиться комплексное решение всех факторов, влияющих на производительность, и в первую очередь на повышении уровня автоматизации станков.

1. Обзор состояния вопроса и постановка задачи на дипломное проектирование

Развитие технического прогресса во всех областях науки и техники связано с повышением требований к точности обработки деталей машин при высокой производительности технологического оборудования. Важно не только получить высокую начальную точность станка, но и сохранить её в течении длительного периода эксплуатации. Надёжность станка как технологической системы (технологическая надёжность) становится одной из основных характеристик его качества. Повышение технологической надёжности - одновременное повышение производительности и ресурса работы станков, повышение их эффективности использования в производстве, так как при этом сокращается число подналадок станков, уменьшается объём контрольных измерений деталей, стабилизируется величина припуска, оставляемого на окончательные операции обработки.

С распространением идей кибернетики возник новый взгляд на станки как на машины с неизбежными (естественными) погрешностями функционирования, потому что станок нельзя изолировать от среды, в которой он работает, от влияния вредных процессов, протекающих при его работе (вибраций, силовых и тепловых деформаций, износа, коробления деталей и т.д.). Основным направлением повышения технологической надёжности станков является создание саморегулируемых станков, сохраняющих показатели точности обработки при воздействии окружающей среды и указанных вредных процессов.

Степень воздействия факторов, влияющих на точность обработки, определяется особенностями конструкции станков, технологии и организации производства, используемых при их эксплуатации. Как показывают исследования, погрешности, связанные с тепловыми деформациями, соизмеримы с допусками на изготовление деталей и с требованиями к точности перемещений рабочих узлов станков, а нередко значительно их превышают.

1.2 Горизонтально-расточные станки, выпускаемые в РФ и других странах

В настоящее время уровень российского станкостроения довольно высок. Российское станкостроение представлено несколькими фирмами. Среди них 4 широко известных станкостроительных завода: Рязанский, Стерлитамакский, Нижегородский и Ивановский, также малоизвестный “Электросистема”, 2 сравнительно недавно созданных фирмы “Пумори” и “Микротехника”. Как правило, наши станки, за исключением некоторых производства Стерлитамакского завода и завода “Электросистема”, не оснащены УЧПУ и большинство из них не имеет индекса СЕ, т.е. не сертифицировано для европейского рынка. Однако это не мешает потенциальным заказчиками, в т.ч. из Европы, активно интересоваться условиями продажи этих станков, несмотря на их довольно непрезентабельный внешний вид.

Фирма “Стерлитамак М.Т.Е.”, демонстрирует широкую номенклатуру своего станочного оборудования, прежде всего многоцелевых станков (но также вертикально- и радиально - сверлильных, хонинговальных, а также прессов).

Обрабатывающий центр модели 630Н предназначен для комлексной 4-х сторонней обработки деталей из различных материалов в условиях мелкосерийного и серийного производства.

Обрабатывающий центр модели 630VH предназначен для комплексной обработки деталей из различных конструкционных материалов с пяти сторон без переустановки в условиях мелкосерийного, серийного и крупносерийного производства.

Обрабатывающий центр модели 800VF6 предназначен для комплексной обработки деталей из различных материалов в 6 координатах управляемых ЧПУ (5 координат управляются одновременно), возможность 5-осевой обработки сложных деталей, постоянная точность обработки, длительный срок эксплуатации, возможность оснащения стандартными и специальными поворотными столами.

Постепенно возрождается Ивановский завод тяжелого станкостроения - когда-то флагман советского станкостроения, один из немногих заводов, успешно экспортировавших свои многоцелевые станки и ГПМ за рубеж. Это возрождение стало очевидным на примере развития его новейших разработок. Если на выставке “Металлообработка - 98” демонстрировался прототип станка мод. “Суперцентр ИС 630”, то спустя 2 года посетители увидели уже серийные образцы этого станка с размерами спутников 630 х 630 мм и аналогичного станка большего типоразмера - “Суперцентр ИС 800”.

Их важнейшие технические характеристики - максимальные скорости перемещения по осям координат - 60 м/мин (ИС630) и 40 м/мин (ИС 800), ускорения (8 м/с2), а также частота вращения шпинделя - 12000 об/мин. Следует также отметить, что “Суперцентр ИС 800” впервые оснащен расточной оправкой длиной 600 мм, что позволяет без переустанова обрабатывать на нем достаточно длинные детали автомобильных двигателей (блоки цилиндров, головки блоков).

Одним из самых наглядных свидетельств продолжения развития станкостроения в России стал разработанный ЛСПО “Свердлов” прототип мехатронного обрабатывающего центра мод. МС 630 ПМФ4. Этот 5- координатный прецизионный (точность линейного позиционирования ± 3мкм, углового ± 2 угл. с) обрабатывающий центр имеет необычную и в то же время рациональную компоновку и предназначен для обработки (с пяти сторон) заготовок размерами до 500 х 500 х 500 мм с поверхностями пространственно сложных форм, в частности сверления и растачивания отверстий, а также измерения этих поверхностей с записью управляющих программ для их обработки. Заготовки устанавливают на поворотном столе диаметром 630 мм и грузоподъемностью 1000 кг. Скорости линейных подач составляют 30 м/мин, угловых - до 18 об/мин, частота вращения шпинделя (от привода мощностью 20 кВт) достигает 24000 об/мин. Инструментальный магазин станка рассчитан на 12 инструментов с конусом ISO 50.

К числу российских предприятий, станки которых отличаются высоким техническим уровнем, безусловно относится и ОАО САВМА - основной поставщик станков для авиакосмической промышленности России. Его фрезерные и многоцелевые станки предназначены для обработки как чугуна и стали, так и труднообрабатываемых материалов, например, титана, а также алюминия.

Рязанский станкостроительный завод и АО “САСТА” специализируются на производстве универсальных токарных станков и станков для обработки труб нефтегазового сортамента.

И конечно же у отечественных станков есть много зарубежных конкурентов. Во главе далеко не малого списка стоят такие страны как Япония, Германия, США, Корея, Швейцария, Италия.

Эти страны по истине являются гигантами станкостроения. Объемы продаж постоянно растут, разрабатываются новые технологии, внедряются новые материалы, выявляются новые тенденции и принципы станкостроения. Каждая страна, и даже каждая фирма, стремится повысить конкурентоспособность свей продукции. Именно поэтому периодически происходит смена лидера, оставляя общее положение без изменений.

Обрабатывающий центр фирмы “CINCINNATI LAMB” идеально подходят для небольших механических цехов и учебных центров, так как сочетают в себе легкость эксплуатации, высокую производительность и низкую стоимость. Высокая точность обработки: точность позиционирования ±5 мкм, воспроизводимость ±1 мкм. Скорость быстрой подачи 20 м/мин и величина разгона - замедления привода 3 м/с2 обеспечивают максимально высокий коэффициент использования шпинделя. Функции, обычно доступные только на дорогостоящих станках, например, предварительное программирование разгона-замедления и функция цилиндрической интерполяции для обеспечения оптимальной скорости контурной обработки и точности. Конвейер шнекового типа для удаления стружки, входящий в базовую комплектацию станка, уменьшает время очистки рабочей зоны.

Вертикальные обрабатывающие центры VMC 40 и VMC 40/8 предназначены для широкого диапазона фрезерных, сверлильных, расточных и прочих операций. Концепция центров основана на продольном перемещении стола, вертикального и поперечного перемещения шпиндельной бабки. Этим обеспечивается высокая стабильность и точность при высокой производительности фрезерования. Сервоприводы соединены с точными ШВП. На станках применены направляющие качения фирмы SCHNEEBERGER. Эта комбинация обеспечивает высокую точность позиционирования наряду с высокими скоростями подач. Широкий диапазон частот вращения шпинделя позволяет обрабатывать все виды материалов. 

1.3 Пути и цели модернизации станков

Повышение производительности металлорежущих станков является важной проблемой для заводов машиностроения. Производительность станков может быть повышена проведением ряда мероприятий.

В настоящее время усилия станкостроителей направлены на совершенствование узлов металлорежущих станков.

В частности, предлагаются различные системы и методы смазки подшипников. Недостатки и дороговизну гидростатических и магнитных подшипников пытаются уменьшить путём создания гибридных конструкций. Так, фирма NTN (Япония) предложила комбинацию аэростатического и магнитного подвеса, а фирма Okuma (Япония), используя этот шпиндель, получила высочайшее качество обработанной поверхности.

Повышение жёсткости и точности базирования инструмента достигается путём изменения свойств и конструкции хвостовика. Его дальнейшее совершенствование привело к замене дисковых пружин, подверженных усталости вызывающих нестабильность усилия зажима и разжима, спиральными дисковыми, а также газовым зажимом. В последнем случае механизм зажима укоротился на 50 мм.

Также созданы и применяются ШВП, рассчитанные на скорости перемещения до 200 м/мин.

Создан и стал применяться на станках линейный привод, создающий крутящий момент. К его преимуществам относят: малую нагрузку на систему привода из-за отсутствия взаимодействия между постоянным магнитом и стальным сердечником; простоту получения значительного усилия; высокую стабильность скорости в пределах 0,05 %, т.к. в двигателе отсутствует сердечник, а деформация обмотки во время работы очень мала из-за её значительной жесткости; малое выделение тепла; простоту замены; простоту сборки без регулировки зазора, т.к. эксцентриситет вала по отношению к обмотке ни на что не влияет.

Также усовершенствоваются классические шпиндели, они разрабатываются специально для высоких оборотов и высокой точности. Широкое основание, высокоточные радиально-упорные подшипники. Прямой привод обеспечивает низкий уровень шума, низкие вибрации и высочайшее качество обрабатываемой поверхности.

Развиваются и другие устройства привода подачи. Например, стандартными стали устройства охлаждения винтов ШВП. Предложены устройства, монтируемые с противоположной стороны двигателя, что упрощает монтаж.

Что касается направляющих, то их совершенствование свелось к компромиссу между применением гидростатики, востребованной в наиболее точных многоцелевых, токарных и шлифовальных станках, и сохранением силы трения, препятствующей возникновению колебаний. Чистые направляющие скольжения из-за высокой силы трения не обеспечивают достаточной точности позиционирования и вызывают проблемы при больших подачах. Направляющие качения, хотя и наиболее популярны, но обладают малой демпфирующей способностью и поэтому не гасят колебания. В результате наблюдается рост конструкций гибридного типа, и совершенствуются направляющие качения с целью повысить их демпфирующую способность.

Базовые элементы конструкций станков всё чаще изготавливают из новых материалов. Всё большую популярность завоёвывает полимербетон, обладающий следующими преимуществами в сравнении с чугуном: прекрасными демпфирующими свойствами; превосходной тепловой стабильностью, высокой химической стабильностью, отсутствием необходимости в окраске, коротким циклом производства, сокращением объёмов последующей обработки, возможностью изготовления сложных форм из нескольких простых путём склейки. Необходимость снижения массы подвижных узлов высокоскоростных станков требует применения и других конструкционных материалов. В их числе керамика, алюминиевые сплавы, упрочнение углеродным волокном, пластмасса и др.

Упорная работа ведётся по расширению технологических возможностей станка. Станок приспосабливают для выполнения более широкого круга работ в пределах его основного технологического назначения или для выполнения ранее не свойственных ему работ.

Общие тенденции развития конструкций станков сводятся к созданию многооперационных станков вместо высокоскоростных, т.к. концентрация различных операции вместо простой интенсификации рабочего процесса даёт больший эффект повышения производительности.

К такой категории станков относятся многоцелевые расточные станки. Именно в них сосредоточена наибольшая концентрация различного рода операций и именно такие станки являются базой для создания крупных обрабатывающих центров.

Значение высокоскоростной обработки и в особенности высокоскоростного фрезерования значительно возросло с появлением новых конструкций станков и инструментов, позволяющих снимать большой объем материала, что приводит к снижению времени обработки при одновременном повышении качества поверхности готовых деталей. В статье G. Warnecke , et al. «Динамика высокоскоростной обработки» отмечается, что скорости резания при высокоскоростной обработке в 2 - 3 раза превышают скорости резания при обычной. В связи с ускорением времени контакта между режущими кромками инструмента и заготовкой поведение ее материала при высокой степени деформации, высокой температуре этого материала и инструмента до конца пока неясно и не может быть точно описано обычными законами металловедения. При обычных скоростях резания с их увеличением сила резания уменьшается, а при очень высоких, благодаря силам инерции, увеличивается. Измерение этих сил затруднено вследствие ограничений, налагаемых измерительной системой. Чтобы обеспечить воспроизводимость измерений фактически действующих сил резания, например, при фрезеровании эта система должна обладать очень высокой жесткостью и иметь датчик с достаточно высокими резонансными частотами. Для увеличения диапазона скоростей, при которых могут быть измерены силы резания, можно использовать алгоритмы расчета сигнала, на который не оказывают влияния системы.

Измерение усилий резания неразрывно связано с измерением температуры резания, в частности, температуры поверхности стружки. Наиболее эффективно в настоящее время проведение такого измерения с помощью оптоволоконного двухцветного пирометра.

В твердосплавной пластине резца, предназначенного для высокоскоростного точения алюминиевого сплава, было просверлено отверстие, в которой введен световод и установлен на расстоянии 0,4 мм от главной режущей кромки и на расстоянии 1 мм от вспомогательной. Такое минимальное расстояние между световодом и поверхностью сходящей с резца стружки позволяет точно измерить ее температуру при минимальном диаметре измеряемого светового пятна. Функция световода - реагировать на излучение в контактной зоне или вблизи ее. Его положение можно регулировать углом наклона просверливаемого отверстия. Для сравнения экспериментальных и моделируемых результатов была выбрана скорость резания 3000 м/мин, подача 0,25 мм/об и глубина резания 2 мм. При таких режимах на передней поверхности резца наблюдается значительная адгезия. Эта адгезия происходит в зоне отверстия для световода. Этим обеспечивается возможность измерения пирометром температуры непосредственно стружки или, по меньшей мере, температуры тонкой алюминиевой пленки на передней поверхности. Полученные температуры стружки показаны на рис. 2, причем они жестко зависят от скорости резания. Было обнаружено, что максимальное увеличение температур происходит, главным образом, в области обычных скоростей резания (до 1000 м/мин). Их дальнейшее увеличение приводит к непропорциональному увеличению температуры стружки. При очень высоких скоростях резания температуры стружки достигают температур плавления материала заготовки.

В статье Marty A. et al. «Учет вибрации заготовок при числовом моделировании высокоскоростной обработки» рассматривается задача создания модели, использующей все существующие физические и эмпирические сведения о системе «заготовка - инструмент - станок» и на основании этого позволяющей прогнозировать такие результаты обработки как окончательное качество поверхности (круглость, шероховатость и другие геометрические параметры) и виброхарактеристики системы «заготовка - инструмент - станок».

С этой целью для заготовки, станка и инструмента были созданы динамические модели, которые могут быть любого типа, но должны описывать реальное физическое поведение указанных компонентов, и геометрическая модель заготовки, позволяющая в любой момент быть в курсе относительно ее граничной поверхности, причем степень ее вибродеформация выводится из динамической модели. И, наконец, была получена модель взаимодействия инструмента с заготовкой (т.е. процесса резания), учитывающая силу резания в любой момент времени. При таком подходе рассмотрение процесса съема материала значительно упрощается, исключаются его механические детали. Основное допущение базируется на использовании концепции так называемого исчезающего инструмента, приводящей к расчету пересечения двух объемов: объема заготовки и объема стружки, получаемого при воздействии на нее передней поверхности инструмента, в результате чего приходят к объемной модели, учитывающей вибродеформацию заготовки.

Практической борьбе с высокочастотными вибрациями при тонкой расточке посвящена статья E. Edhi et al. «Механизм возникновения высокочастотной вибрации при тонком растачивании и ее предотвращение». Было обнаружено, что у расточной оправки с отношением длины к диаметру менее 1,5 при тонком растачивании сквозного отверстия диаметром 15 мм возникают вибрации с частотой свыше 10000 Гц. В результате анализа механизма возникновения и развития таких вибраций был разработан фрикционный демпфер простой конструкции, особенность которого состоит в том, что демпфирующая масса прикреплена постоянным магнитом к расточной оправке некруглого сечения. В торце этой оправки высверлено отверстие под демпфер диаметром 5 мм.

В статье H. Niemann , et al. «Роль параметров резания и покрытий инструментов при высокоскоростном фрезеровании титановых сплавов концевыми сферическими фрезами» отмечается, что в настоящее время свыше половины используемых в промышленности титановых сплавов - это б- в- сплавы Ti -6 Al -4 V. По ряду известных причин они с трудом поддаются механической обработке, в том числе твердосплавными инструментами как цельными, так и составными. У режущих кромок этих инструментов следует минимизировать абразивное истирание/деформацию. Они должны иметь возможность сопротивления механизмам износа, обусловливающих диффузию/растворение, а также быть достаточно вязкими, чтобы противостоять скалыванию/растрескиванию режущих кромок. Поскольку такими свойствами ни один инструмент в комплексе не обладает, то одним из наиболее эффективных решений является нанесение на твердосплавные инструменты различных покрытий. Следует отметить, что с покрытиями в настоящее время выпускают примерно 75 % твердосплавных инструментов.

В то же время результаты ряда исследований позволяют утверждать, что твердосплавные инструменты с покрытиями по сравнению с инструментами без покрытий не обладают очевидными преимуществами как при точении титановых сплавов, так и при их фрезеровании. При фрезеровании этих сплавов концевыми сферическими фрезами скорость резания достигает 400 м/мин, причем разрушение инструмента происходит обычно путем износа по задней поверхности при сравнительно небольшом кратерном износе. Его стойкость существенно продлевалась при охлаждении, причем охлаждение масляным туманом оказалось значительно эффективнее охлаждения поливом.

Известно, что опоры высокоскоростных шпинделей нередко становятся лимитирующим фактором для улучшения их характеристик. Несмотря на быстрое развитие новых типов опор (магнитные, аэро- и гидростатические и пр.), подшипники качения, теперь уже гибридные (со стальными кольцами и керамическими шариками) продолжают сохранять свое лидирующее значение. Новые разработки в этой области, как отмечено в статье O. Bayer «Современные концепции шпиндельных опор», направлены, прежде всего, на улучшение эксплуатационных характеристик, повышение срока службы, надежности и, соответственно, на снижение стоимости опор.

Гибридные подшипники, изготовленные из стали Cronidur 30, имели при испытаниях примерно в 10 раз больший срок службы, чем изготовленные из обычной подшипниковой стали. В частности, как показано в статье H. Voll «Высокоскоростная обработка алюминия», такие подшипники могут быть установлены на высокоскоростных электрошпинделях германской фирмы WEISS GmbH мощностью 80 кВт и с частотой вращения 40000 мин. С их помощью съем материала при обработке алюминия можно довести до 4000 см3/мин.

Другое решение в области опор для электрошпинделей высокоскоростных станков предложено в обзорной статье R. Fos , et al. «Возможности, пределы и исследования высокоскоростных стандартных шпинделей». Известно, что при доведении частот вращения шпинделей до 60 - 80 тыс. мин-1, подшипники являются одним из важнейших ограничительных факторов. Применение любых подшипников, кроме магнитных, ограничивает в основном угловую скорость и мощность привода. Использование магнитных подшипников снимает эти ограничения, но налагает новые в отношении стоимости вследствие необходимости применения значительно более сложной электронной аппаратуры и установки ряда периферийных компонентов. В статье выполнен также синтез теоретических принципов структур магнитных опор и процессов их контроля. Показано, что магнитные опоры применимы при небольших мощностях приводов, например в насосах для перекачивания крови при использовании плоских роторов, где требования к контролю процесса относительно невысоки. Для снабженных магнитными опорами систем более высокой мощности существуют трудности с управлением процессом при высоких скоростях вращения в переходных процессах, возникающих при взаимодействии между функциями сообщения движения и функцией опоры. В настоящее время исследования сосредоточены на разработке новых конструкций магнитных опор и новых методов управления магнитным потоком и переходными процессами, позволяющих стабильно получать высокие скорости вращения исполнительных узлов (например, шпинделей).

1.4 Постановка задачи на дипломное проектирование

Рассматривая приведенные выше доводы, становится ясно, что вопрос модернизации и реконструкции устаревшего парка металлообрабатывающих станков носит актуальный характер. Учитывая перечисленный объем номенклатуры новейших изделий и отдельных узлов для металлообрабатывающих станков, направления модернизации оборудования могут быть очень разнообразны, и из этого разнообразия владелец самостоятельно определяет, какой вид реконструкции ему нужно провести для повышения производительности и качества обработки оборудования.

Задачей этого дипломного проекта является реконструкция горизонтально-расточного станка повышенной жесткости. За базу выбран горизонтально-расточной станок модели 2А622. Для повышения жесткости предусматривается изменение несущей системы станка. Так же предусматривается изменение обрабатывающих характеристик. В совокупности эти изменения должны повысить производительность и качество обработки изделий данной моделью металлообрабатывающего станка.

2. Реконструкция горизонтально-расточного станка модели 2А622

2.1 Обоснование реконструкции станка

В настоящее время в российской промышленности имеется большой парк морально и физически устаревших координатно-расточных станков моделей 2А450, 2Д450, 2Е450, 2А620, 2А622 и их модификаций производства нашего завода. Возраст этих станков достигает 30-40 лет, поэтому их конструкционные решения не отвечают современным требованиям, предъявляемым к станкам. Кроме того, высокий износ узлов и потеря точностных параметров вызывают проблемы с их эксплуатацией. Всё это требует обновления станочного оборудования, но большинство предприятий в современной экономической обстановке не имеют для этого достаточных средств. Поэтому в данных условиях экономически целесообразно производить модернизацию имеющегося оборудования, в результате чего потребитель получает современный станок, в конструкции которого воплощён наш многолетний опыт производства станков, соответствующий всем требованиям к точности (для данного станка), оснащённый современными комплектующими и системами управления. При этом заказчик, сдав станок на модернизацию, может не ждать когда пройдёт весь производственный цикл модернизации станка, а получить модернизированный станок данной модели (или станок другой модели) из имеющегося на заводе задела по станкам. При этом из цены приобретенного станка вычитается оценочная стоимость сданного станка.

Основными составляющими модернизации координатно-расточных станков c ручным управлением в общем случае являются:

§ установка электронной отсчётно-измерительной системы, включающей в себя фотоэлектрические преобразователи линейных перемещений типа ЛИР и устройство цифровой индикации взамен оптических отсчётных устройств;

§ использование программируемого контроллера для построения схемы электроавтоматики станка взамен релейной схемы управления;

§ шариковые винтовые пары и регулируемые высокомоментные электродвигатели постоянного тока в приводах перемещений стола и салазок взамен зубчато-реечных передач, простых регулируемых электродвигателей постоянного тока и червячных редукторов;

§ установка пневмозажимов стола и салазок вместо электромеханических зажимов;

§ механизация перемещения шпиндельной коробки;

§ применение конструкции привода перемещения гильзы с регулируемым двигателем постоянного тока.

2.2 Компоновка станка повышенной жесткости

Реконструкция данной модели предусматривает проектирование новой стойки и коробки скоростей. За счет замены этих основных частей происходит повышение жесткости станка и как следствие возможность изменений режимов резания, что в свою очередь ведет к повышает производительности.

2.3 Обоснование повышенной производительности станка (режимы резания)

На производительность станка в большей мере влияют режимы резания. При проведении реконструкции происходит повышение частоты вращения шпинделя с 1250 об/мин (у базовой модели) до 2550 об/мин (у модернизированного станка). Изменение частоты обосновывается возможностью использования наиболее прогрессивных режимов резания при помощи новейшего инструмента. Расчет режимов резания на максимальной частоте производится при наиболее возможных жестких режимах работы станка.

2.3.1 Выбор режимов резания:

Величину подачи S (мм/об) назначить /7/.

S=0,8ч1,9 мм/об

2.3.2 Определить скорость главного движения резания (м/мин), допускаемую режущими свойствами резца по формуле:

(1)

Примем скорость равную = 88 м/мин.

где Т - период стойкости, мин /7/

t - глубина резания, при снятии припуска за один рабочий ход :

(2)

где s - подача, мм/об /7/

C, x, y, z, m - коэффициенты и показатели степени /7/

- поправочный коэффициент, учитывающий влияние физико-механических свойств обрабатываемого материала на скорость резания /7/

- поправочный коэффициент, учитывающий влияние состояния поверхности заготовки на скорость резания /7/;

- поправочный коэффициент, учитывающий влияние инструментального материала на скорость резания /7/;

- поправочные коэффициенты, учитывающие влияние геометрических параметров режущей части инструмента на скорость резания /7/;

2.3.3 Составляющие силы резания: тангенциальную , осевую , радиальную (Н), рассчитаем по формуле:

(3)

где ,x, y, n - коэффициент и показатели степени /7/;

t - глубина резания, мм /7/;

s - подача, об/мм /7/;

v - скорость резания, м/мин /7/;

- поправочный коэффициент, учитывающий влияние качества обрабатываемого материала на составляющие силы резания /7/;

- поправочные коэффициенты, учитывающие влияние геометрических параметров режущей части инструмента на составляющие силы резания /7/.

2.3.4 Мощность резания рассчитаем по формуле:

(4)

где - тангенциальная составляющая силы резания /7/;

- скорость резания /7/.

2.4 Расчет коробки скоростей

2.4.1 Выбор приводного электродвигателя

Мощность главного электродвигателя вытекает из расчетов режимов резания. Для обеспечения требуемого диапазона частот вращения выбираем двухступенчатый двигатель 4А160 4/2УЗ со следующими характеристиками: Nэл=11/14 кВт, nэл=1460/2940 об/мин.

2.4.2 Определение общего диапазона регулирования привода

(5)

где nmax - наибольшая частота вращения шпинделя, об/мин;

nmin - наименьшая частота вращения шпинделя, об/мин.

2.4.3 Определение общего числа ступеней скорости

Для геометрического ряда частот вращения число ступеней скорости z, может быть определено из соотношения:

(6)

Вычисленная по этой формуле величина z округляется до целого числа, что приводит к некоторому изменению действительного диапазона регулирования Rn

2.4.4 Выбор конструктивных вариантов привода

При настройке последовательно включенными групповыми передачами число ступеней скорости z может быть представлено в виде:

(7)

где pk - число отдельных передач в каждой группе;

m - число групп передач.

При выбранном числе ступеней частот вращения шпинделя z количество групп передач, количество передач в каждой группе и порядок расположения групп может быть различным.

Число конструктивных вариантов привода Nкон состоящего из m групп передач, определяется по формуле:

, (8)

где q - число групп с одинаковым числом передач.

2.4.5 Определение числа возможных кинематических вариантов

Если частоты вращения шпинделя изменяются по геометрическому ряду, то передаточные отношения передач в группах образуют геометрический ряд со знаменателем х, где х - целое число, называемое характеристикой группы передач. Для последовательного получения частот вращения шпинделя сначала переключают передачи одной группы, затем другой и т. д.

В зависимости от принятого порядка переключений группа может быть:

а) основной, характеристика, которой определяется по формуле:

х0 = 1 , (9)

б) первой переборной группой, для которой характеристика определяется по формуле:

х1 = р1 , (10)

где р1- число передач в основной группе.

в) второй переборной группой, для которой характеристика определяется по формуле:

х2 = р1 р2 , (11)

где р2- число передач в первой переборной группе.

Основной и различными по номеру переборными группами может быть любая группа передач в приводе. Для определенного конструктивного варианта число кинематических Nкин будет равно числу перестановок из m групп передач:

Nкин. = m! , (12)

2.4.6 Определение максимальных передаточных отношений по руппам передач

Общее максимальное передаточное отношение привода umax, определяется по формуле:

(13)

Поученное передаточное отношение может быть представлено в виде:

(14)

где Н - показатель степени, определяющий величину общего передаточного отношения.

Определение максимальных передаточных отношений в группах производится путем разбиения общего передаточного отношения на передаточные отношения групп, для чего вычисляется показатель степени Н и выражается в виде:

, (15)

где hk- показатель степени, характеризующий величину максимального передточного отношения k-той группы передач;

m - число групп передач.

При этом выбранные значения hk должны быть целыми числами и должны удовлетворять условию:

hk hk+1 hm . (16)

Максимальное передаточное отношение в группе umaxk , определится по формуле:

. (17)

При этом должно быть обеспечено выполнение следующего условия:

. (18)

Так как показатель степени Н, как правило, не является целым числом, он не может быть точно представлен суммой целых чисел. Поэтому для сохранения величины общего максимального передаточного отношения вводится дополнительная передача от вала электродвигателя на входной вал, передаточное отношение которой, определится по формуле:

, (19)

. (20)

2.5 Выбор вариантов структурной формулы

2.5.1 Выбор первого варианта

Выбирается конструктивный вариант привода, для которого выполняется условие:

pa pb pr , (21)

где ра - число передач в первой от электродвигателя группе;

pr - число передач в последней от электродвигателя группе.

Из числа соответствующих ему кинематических вариантов выбирается тот, для которого справедливо условие:

xa xb xr , (22)

где ха - характеристика передач первой от электродвигателя группы;

xr - характеристика передач последней от электродвигателя группы.

2.5.2 Выбор второго варианта

Для выбранного в первом случае конструктивного варианта, выбирается еще один кинематический вариант, для которого диапазон регулирования в каждой группе передач удовлетворяет условию:

, (23)

2.5.3 Выбор третьего варианта

Выбирается конструктивный вариант привода с произвольным расположением групп передач. Из числа соответствующих ему кинематических вариантов, выбирается один для которого справедливы условия (22) и (23).

2.5.4 Выбор четвертого варианта

Выбор данного варианта осуществляется за счет изменения распределения общего максимального передаточного отношения по группам передач в одном из ранее выбранных вариантов. При этом обязательным является выполнение условия (23).

2.6 Построение структурной сетки

Структурная сетка (рисунок 14) строится в соответствии с выбранной формулой структуры привода. В ней находит отражение относительная связь между передаточными отношениями в группах, поэтому лучи для каждой группы проводятся симметрично, а количество интервалов между их концами численно равно характеристике группы, определяемой в соответствии со структурной формулой.

Рисунок 14 - Структурная сетка

2.7 Построение графика частот вращения

График частот вращения (рисунок 15) отражает частоты вращения всех валов привода, включая валы одиночных передач, необходимых для его компоновки. Построение начинают с цепи редукции, обеспечивающей снижение частоты вращения электродвигателя nэд. до nmin на шпинделе. Для дальнейшего построения используется структурная сетка.

Рисунок 15 - График частот вращения

2.8 Определение передаточных отношений в группах передач

Для определения передаточных отношений используются построенные графики частот вращения.

Передаточное отношение передачи u, определяется выражением:

u = k , (24)

где k - число интервалов между горизонталями, перекрытых лучами, соединяющими отметки частот вращения на соседних валах.

2.9 Определение чисел зубьев передач

При определении чисел зубьев исходят из постоянства межосевого расстояния и числа зубьев, определяют по следующим формулам:

, (25)

, (26)

, (27)

(28)

где z1 и z2 - числа зубьев ведущего и ведомого колес;

z0 - сума чисел зубьев сопряженных колес;

f - числитель передаточного отношения;

g - знаменатель передаточного отношения;

K - наименьшее кратное сумм (f + g);

Е - целое число;

zmin= 18 - минимальное число зубьев.

В соответствии с полученными числами зубьев передач, вычерчивается вариант кинематической структуры (рисунок 16).

Рисунок 16 - Кинематическая структура коробки скоростей

2.10 Определение крутящих моментов на валах коробки скоростей

Крутящие моменты на валах Т, Н·м, могут быть найдены по формуле:

(29)

где Рэд. - мощность на валу двигателя, кВт;

- КПД участка кинематической цепи от двигателя до рассчитываемого вала;

n - расчетная частота вращения вала, об/мин.

Кинематический расчет коробки скоростей выполнен с использованием программы «SIRIUS 2». Результаты расчета находятся в приложении А.

2.11 Расчет прямозубой эвольвентной передачи

2.11.1 Определение модуля зубчатой передачи расчетом на контактную выносливость зубьев

Для прямозубой цилиндрической передачи модуль mн, мм, определяется по формуле:

(30)

где Kd - вспомогательный коэффициент; для прямозубых передач Kd = 770;

z1 - число зубьев шестерни;

T1 - вращающий момент на шестерне, Нм;

u - передаточное отношение передачи;

НР - допускаемое контактное напряжение, МПа;

KH - коэффициент, учитывающий распределение нагрузки по ширине венца;

(31)

где b - рабочая ширина венца зубчатой передачи;

d1 - делительный диаметр шестерни.

2.11.2 Определение модуля зубчатой передачи расчетом на выносливость зубьев при изгибе

Для прямозубой цилиндрической передачи модуль mF, мм, определяется по формуле:

(32)

где Km - вспомогательный коэффициент; для прямозубых передач Km = 14;

KF - коэффициент, учитывающий распределение нагрузки по ширине венца при изгибе;

FP - допускаемое изгибное напряжение, МПа;

YF1 - коэффициент учитывающий форму зубьев шестерни.

2.11.3 Определение стандартного модуля зубчатой передачи

Из полученных расчетных значений mH и mF выбирается наибольшее значение и округляется в сторону увеличения до стандартного модуля по ГОСТ 9563- 60. При этом должно выполняться следующее условие:

m1 m2 mk , (33)

где m1 - модуль зубчатых передач группы, расположенной первой от электродвигателя;

mk - модуль зубчатых передач группы, расположенной последней от электродвигателя.

2.11.4 Определение межосевого расстояния зубчатой передачи

Для прямозубой цилиндрической передачи межосевое расстояние А, мм, определяется по формуле:

(34)

где m - стандартный модуль передачи, мм;

z2 - число зубьев зубчатого колеса, сопряженного с шестерней.

При определении межосевых расстояний по группам передач должно выполняться следующее условие:

Aw1 Aw2 Awk , (35)

где Aw1 - межосевое расстояние передач группы, расположенной первой от электродвигателя;

Awk - межосевое расстояние передач группы, расположенной последней от электродвигателя.

Расчет прямозубой эвольвентной передачи выполнен с использованием программы «SIRIUS 2». Результаты расчета находятся в приложении Б.

2.12 Расчет и построение свертки коробки скоростей

2.12.1 Разработка компоновочной схемы коробки скоростей

Компоновочная схема разрабатывается в следующем порядке:

а) определяются расстояния между осями валов и проводятся осевые линии.

б) на осях располагаются зубчатые колеса, муфты и другие передачи и механизмы в соответствии с кинематической схемой. При этом нужно обеспечить возможность перемещения подвижных зубчатых колес и муфт, размещения механизмов управления, регулирования подшипников, сборки и разборки узла, а также обратить внимание на то, чтобы передвижные блоки зубчатых колес не сцепились одновременно с двумя неподвижными колесами на смежном валу.

в) вдоль оси каждого вала проставляются все соответствующие конструктивные размеры, что позволяет определить его ориентировочную длину.

2.12.2 Вычерчивание свертки коробки скоростей

1. Выбирается положение оси первого вала.

2. Из центра первого вала проводится окружность радиусом, равным расстоянию между осью первого вала и осью соседнего вала. Любая точка на этой окружности может быть центром этого вала и будет удовлетворять условию зацепляемости колес. Центр выбирается с учетом возможности рационального расположения и остальных валов.

3. Таким же путем определяются центры других валов. При расположении валов необходимо обеспечить простую форму корпуса, удобство его обработки, сборки и разборки. Нужно стремиться располагать центры валов на одних и тех же линиях, как по вертикали, так и по горизонтали, что делает корпус более технологичным.

2.12.3 Определение усилий действующих в зубчатых зацеплениях

На основе построенной свертки выполняется расчетная схема (рисунок 17), представляющая собой условное изображение расчетной цепи зубчатых передач. В полюсе зацепления каждой зубчатой пары, по нормали к боковым поверхностям зубьев, действуют силы Fn, Н, величина которых определяется по формуле:

(36)

где m и z - модуль и число зубьев зубчатого колеса;

Т - вращающий момент приложенный к валу зубчатого колеса, Нмм.

Рисунок 17 - Свертка коробки скоростей

Сила Рn12, Н, действующая со стороны шестерни на первом валу на зубчатое колесо второго вала:

Сила Рn23, Н, действующая со стороны шестерни на втором валу на зубчатое колесо третьего вала:

Сила Рn34, Н, действующая со стороны шестерни на третьем валу на зубчатое колесо четвёртого вала:

Сила Рn45, Н, действующая со стороны шестерни на четвертом валу на зубчатое колесо пятого вала:

Сила Рn56, Н, действующая со стороны шестерни на пятом валу на зубчатое колесо шестого вала:

2.13 Расчет и подбор подшипников

2.13.1 Определение реакций в опорах валов

Необходимо определить реакции в каждой опоре с помощью уравнений статики, которые имеют следующий вид:

, , , (37)

где Fkx - сумма всех сил, действующих в плоскости Ozx;

Fky - сумма всех сил, действующих в плоскости Ozy;

mO(Fk) - сумма моментов сил относительно выбранной точки плоскости.

2.13.2 Выбор подшипников по статической грузоподъемности

Критерием для подшипника служит неравенство:

P0 C0 , (38)

где Р0 - эквивалентная статическая нагрузка;

С0 - табличное значение статической грузоподъемности выбранного подшипника.

Величины приведенной статической нагрузки для радиальных подшипников определяются как большие из двух следующих значений:


Подобные документы

  • Технические характеристики горизонтально-расточного станка 2А620Ф2, его устройство, принцип работы, правила эксплуатации и техническое обслуживание. Расчет количества зубьев, знаменателя геометрического ряда, выбор оптимального варианта структурной сетки.

    дипломная работа [12,2 M], добавлен 05.04.2010

  • Модернизация коробки скоростей горизонтально-фрезерного станка модели 6Н82. Графика частот вращения шпинделя. Передаточные отношения, число зубьев. Проверка условий незацепления. Расчет зубчатых передач на ЭВМ. Спроектированная конструкция привода станка.

    курсовая работа [12,0 M], добавлен 08.04.2010

  • Технологические возможности горизонтально-расточного станка 2654, способы крепления заготовки и инструмента, устройство и принцип его действия. Кинематический расчет количества зубьев, частот вращения каждой ступени, построение графика частот вращения.

    курсовая работа [7,2 M], добавлен 05.04.2010

  • Кинематический и динамический расчет деталей привода горизонтально-фрезерного станка. Конструкция коробки скоростей. Расчет абсолютных величин передаточных отношений, модуля прямозубой цилиндрической зубчатой передачи, валов на прочность и выносливость.

    курсовая работа [1,6 M], добавлен 02.01.2013

  • Основные технические характеристики станка TOS Varnsdorf. Технологический процесс изготовления деталей, задачи модернизации. Проектирование, выбор измерительных средств и источника питания. Разработка концептуальной модели системы управления станком.

    дипломная работа [2,5 M], добавлен 20.07.2012

  • Определение мощности коробки подач, частоты вращения валов и модулей зубчатых колес. Проведение расчета вала на усталость. Выбор системы смазки и смазочного материала деталей станка. Подбор электромагнитных муфт, подшипников качения, шпоночных соединений.

    курсовая работа [391,5 K], добавлен 22.09.2010

  • Исследование зависимости температурной деформации шпиндельного горизонтально-фрезерного станка (при холостом ходу) и его узлов от времени работы и охлаждения. Пути минимизации воздействия нагрева на успешность осуществления технологического процесса.

    лабораторная работа [85,2 K], добавлен 02.12.2010

  • Проектирование привода главного движения вертикально-фрезерного станка на основе базового станка модели 6Т12. Расчет технических характеристик станка, элементов автоматической коробки скоростей. Выбор конструкции шпинделя, расчет шпиндельного узла.

    курсовая работа [2,4 M], добавлен 22.04.2015

  • Технические характеристики станка-аналога. Определение предельных диаметров сверла и рациональных режимов резания. Выбор материала и термообработки. Геометрический и силовой расчёт привода. Расчёт валов коробки скоростей. Зажимное устройство и его расчет.

    дипломная работа [3,1 M], добавлен 29.12.2013

  • Расчет технических характеристик станка и выбор его оптимальной структуры. Кинематический расчет привода, элементов коробки скоростей, валов и подшипниковых узлов. Выбор конструкции шпиндельного узла, определение точности, жесткости, виброустойчивости.

    курсовая работа [1,5 M], добавлен 03.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.