Технологические процессы сборки и сварки трубопровода диаметром 50 мм в поворотном положении в базовых условиях

Характеристика сварочно-монтажных работ, их применение для соединения труб в непрерывную нитку магистрального трубопровода. Сущность метода ручной дуговой сварки. Дефекты сварных соединений. Выбор материалов и режима сварки, контроль их качества.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 31.01.2016
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Общая часть
  • 1.1 Характеристика сварочно-монтажных работ
  • 1.2 Сущность метода ручной дуговой сварки
  • 1.3 Дефекты сварных соединений
  • 2. Техническая часть
  • 2.1 Выбор материалов для выполнения сварочных работ
  • 2.4 Выбор режима сварки
  • 3. Организационная часть
  • 3.1 Оснащенность сборочного участка
  • 3.2 Контроль качества сварочных работ
  • 3.3 Охрана труда
  • 4. Экономическая часть
  • 4.1 Краткая характеристика Филиала "Туймазыгаз"
  • 4.2 Организация и нормирование труда при сварочно-монтажных работах в базовых условиях Филиала "Туймазыгаз"
  • 4.3 Расчет стоимости затрат при сварочно - монтажных работах в базовых условиях Филиала "Туймазыгаз"
  • 4.4 Оценка экономической эффективности сварочно-монтажных работ в базовых условиях
  • Заключение
  • Список литературы

Введение

Сварщик - профессия ответственная, почти виртуозная, от качества работы которого зависит многое - долговечность и устойчивость строительных конструкций, работа и срок службы различной техники.

Сварка металлов широко применяется во многих отраслях промышленности и в строительстве и является высокопроизводительным процессом, позволяющим при небольших материальных и трудовых затратах создавать конструкции с высокими технико-экономическими показателями.

Важнейшими направлениями в развитии сварочного производства являются: повышение уровня механизации и автоматизации сварочных процессов, повышение производительности сварочного оборудования, улучшение качества сварных изделий и снижение их себестоимости.

При сварке меньше расходуется металла, так как не применяются накладки и заклепки; сокращаются сроки и снижается стоимость работ вследствие уменьшения трудоемкости изготовления конструкций; снижаются затраты на оборудование, так как сварочное оборудование дешевле, чем сверлильные и дыропробивные станки и клепальные гидравлические машины; увеличивается прочность и герметичность соединений, что особенно важно при изготовлении котлов, сосудов, трубопроводов и других конструкций, что и определяет актуальность темы настоящей дипломной работы.

Целью дипломной работы является изучение технологических процессов сборки и сварки трубопровода диаметром 50 мм в поворотном положении в базовых условиях.

Объектом работы является сборка и сварка трубопровода диаметром 50 мм в поворотном положении в базовых условиях.

Предметом работы является освоение технологии сборки и сварки трубопровода диаметром 50 мм в поворотном положении, проведение экономического расчета.

Субъектом работы является предприятие Филиал ОАО "Газпром газораспределение Уфа" в г. Туймазы.

1. Общая часть

1.1 Характеристика сварочно-монтажных работ

Сварочно-монтажные работы выполняют для соединения отдельных труб в непрерывную нитку магистрального трубопровода. При производстве сварочно-монтажных работ приняты две основные схемы их организации:

1) сварка отдельных труб длиной 6 и 12 м на трубосварочной базе в трубные секции длиной 24 или 36 м с последующей их доставкой на трассу сооружаемого участка;

2) вывоз отдельных труб непосредственно на трассу, где их и сваривают.

При строительстве магистральных трубопроводов применяют, в основном, электродуговую сварку. В этом случае к трубе и к электроду подведены разноименные электрические заряды. При приближении электрода к трубе на определенное расстояние возникает непрерывный электрический разряд, называемый дугой. От тепла электрической дуги металл свариваемых деталей и электрода плавится. При этом металл электрода формирует сварочный шов, упрочняющий место сварки.

В полевых условиях сварку труб магистральных трубопроводов производят с использованием сварочных генераторов - источников постоянного тока. Сварочные генераторы работают от дизельных или карбюраторных двигателей внутреннего сгорания. Для удобства перемещения вдоль трассы строящегося трубопровода сварочный генератор устанавливают на тележку с автомобильными колесами. Широко используют также самоходные сварочные агрегаты, представляющие собой сварочный генератор, установленный на гусеничном тракторе; при этом приводом генератора является двигатель трактора.

Различают ручную и автоматическую электродуговую сварку.

сварка дуговая трубопровод труба

Сварочный пост для ручной электродуговой сварки оборудуют источником питания электрической дуги (сварочным генератором) и двумя электрическими кабелями с прочной изоляцией, на конце одного из которых находится электрододержатель клещевого типа. Электрододержатель предназначен для крепления и подвода тока к электроду. Второй кабель от источника сварочного тока присоединяют к свариваемой трубе с помощью специального зажима. Рабочий-сварщик перемещает электрододержатель с закрепленным в нем электродом вдоль линии соприкосновения труб и формирует сварочный шов.

Каждый электрод состоит из стального стержня диаметром 3.5 мм, изготовленного из малоуглеродистой проволоки, и специального покрытия на поверхности стержня. Покрытие электродов предназначено для достижения сразу нескольких целей: а) для защиты металла сварного шва от проникновения в него из воздуха азота и кислорода, что значительно повысило бы хрупкость шва; б) для обеспечения стабильного горения дуги; в) для легирования металла сварного шва и т.д. В связи с этим электродные покрытия имеют достаточно сложный состав.

Достоинствами ручной электродуговой сварки является возможность сварки неповоротных стыков трубопровода (т.е. отсутствует необходимость вращения труб) и менее жесткие требования к подготовке труб к сварке, чем при ее выполнении другими способами.

Автоматическая электродуговая сварка была разработана в нашей стране в 30-е годы и применяется при сооружении магистральных трубопроводов с 1948 г.

При автоматической сварке применяют не отдельные электроды, а сварочную проволоку диаметром 2.4 мм, которая подается к месту сварки из бухты. Никакого покрытия проволока не имеет. Вместо этого к месту сварки из бункера сварочной головки непрерывно поступает и укладывается слоем толщиной 40.50 мм специально приготовленный зернистый материал - флюс. Слой флюса играет ту же роль, что и покрытие электродов.

Сварка закрытой дугой под флюсом обеспечивает хорошее качество сварного шва, несмотря на высокую скорость ее выполнения - 60.100 м/ч. Однако автоматическую сварку под флюсом можно выполнять только в нижнем положении, что достигается вращением труб - то есть на трубосварочных базах. Однако и здесь автоматическую сварку применяют только после того как трубы будут "прихвачены" друг к другу, т.е. когда ручной сваркой выполнен самый первый (корневой) шов.

До начала сварочных работ проводят подготовку кромок труб: их зачистку и разделку кромок. Зачистка необходима во избежание образования большого числа пор в сварном шве. Заключается зачистка в том, что торцовую часть каждой трубы на длине около 1 м очищают от грязи, наледи и снега. Кроме того, на расстоянии 10.20 мм от торца трубы наружную и внутреннюю поверхности труб, а также их кромки очищают от окалины, ржавчины и грязи до металлического блеска стальными щетками или портативными шлифовальными машинками с абразивными кругами. Разделка кромок заключается в снятии фаски различной формы с торцов труб с целью обеспечения их полного провара. Разделка может быть односторонней, выполняемой с внешней поверхности трубы (ее делают на заводах по производству труб), и двусторонней, выполняемой снаружи и изнутри.

При сборке стыков труб необходимо обеспечить их соосность, совпадение внутренних кромок и сохранение необходимых зазоров. Для этого при проведении сборочно-центровочных операций применяют специальные устройства - внутренние или наружные центраторы.

Наиболее качественную сборку стыков обеспечивает применение внутренних центраторов (рис. 1). Они снабжены специальным распорным механизмом, постоянного тока; выравнивающим кромки труб.

Достоинством внутренних центраторов является то, что стык открыт снаружи и поэтому можно вести сварку без предварительной прихватки. Если центратор достаточно мощный, то с его помощью можно даже устранить овальность концов труб. Внутри труб внутренний центратор перемещают вручную с помощью длинной штанги, либо с использованием электродвигателя.

Рисунок 1 - Общий вид внутреннего центратора ЦВ-102:

1 - рамки; 2 - рама; 3 - центрирующий механизм; 4 - гидрораспределитель; 5 - штанга; 6 - опорные колеса; 7 - поршневой насос; 8 - электродвигатель; 9 - обратный клапан; 10 - предохранительный клапан.

Наружные центраторы (рис. 2) применяются в тех случаях, когда невозможно применение внутренних (например, при сварке захлестов). Они представляют собой многозвенную конструкцию, охватывающую торцы обеих труб снаружи. Стыки, собранные с помощью наружных звенных центраторов, фиксируют с помощью коротких швов длиной 60.80 мм, называемых прихватками, после чего наружный центратор снимают со стыка и накладывают сплошной шов.

С 1952 г. на строительстве магистральных трубопроводов применяется электроконтактная стыковая сварка оплавлением. Она предусматривает нагрев торцов труб до высокой температуры и их последующее соединение под воздействием осевого сдавливания. Преимуществом электроконтактной сварки является ее высокая производительность, поскольку сварное соединение в данном случае образуется сразу по всему периметру стыка в течение 5.10 мин. При электродуговой же сварке сварное соединение формируется последовательным наложением нескольких слоев шва по периметру трубы.

Рисунок 2 - Наружный многозвенный центратор:

1 - натяжной винт; 2 - крестовина; 3 - накидной замок; 4 - рамки; 5,6 - звенья

Основой установки для электроконтактной сварки являются кольцевые трансформаторы, устанавливаемые на торцы свариваемых труб. Кроме того, в состав установки входят механизмы центровки труб, равномерного подвода тока, перемещения труб в процессе оплавления, а также снятия частиц затвердевшего металла (грата) с внутренней и наружной поверхности труб. Все перечисленные операции выполняют передвижные комплексы "Север".

Недостатком электроконтактной сварки являются более жесткие требования к торцам труб (меньшие допуски по овальности, разностенности и др.), чем при электродуговой и автоматической сварке.

К перспективным методам сварки труб относятся сварка лазером, трением, взрывом и т.д.

1.2 Сущность метода ручной дуговой сварки

Сущность всех дуговых методов сварки заключается в использовании тепла электрической дуги - мощного стационарного самостоятельного газового разряда с низким катодным напряжением, существующего в промежутке между двумя электродами, роль которых при сварке выполняют плавящийся или неплавящийся электрод и металл свариваемого изделия. Это тепло идет на расплавление основного и присадочного металлов, сообщения их атомам энергии активации, образование физического контакта и др. процессы, имеющие место при сварке.

При ручной дуговой сварке в качестве анода и катода выступают металл свариваемого изделия и сварочный электрод - металлический стержень, покрытый слоем особого состава - обмазкой, или, согласно официальной терминологии, покрытием. Назначение покрытия - стабилизация дуги, защита и легирование расплавленного металла сварочной ванны. Различают четыре вида покрытия: основной, целлюлозный, рутиловый и кислый; для сварки магистральных трубопроводов разрешены только электроды первых двух видов. Различные виды покрытия электродов по-разному взаимодействуют с металлом в процессе сварки. Химический состав металла электрода и покрытия определяется химическим составом металла свариваемого изделия (труб) и выбранной технологией сварки.

Возбуждение электрической дуги при ручной дуговой сварке основано на использовании явления короткого замыкания. При этом происходит следующее: в месте контакта на катоде образуется катодное пятно, которое настолько сильно нагрето, что становится способным к электронной эмиссии (т.е. испусканию электронов) при приложении напряжения в 60-70 В. Для возникновения сварочной дуги как газового разряда необходимо наличие заряженных частиц, направленное движение которых и будет электрическим током. Явлением, обеспечивающим появление этих частиц, является термическая, или ударная ионизация. Эмитированные катодом электроны в результате соударения с нейтральными ионами приводят к появлению ионов. В результате в газовом промежутке между двумя электродами возникают носители электричества - отрицательно заряженные электроны и положительно заряженные ионы, создаются условия для возникновения сварочной дуги, тепло которой используется при сварке.

Металл сварного шва - закристаллизовавшейся сварочной ванны - будет состоять из смеси металла труб и металла электродов. Его физико-химические характеристики будут зависеть как от качества и правильности принятия решений по выбору технологии сварки, так и от качества выполнения сварочных работ и последующей термообработки сварного шва.

1.3 Дефекты сварных соединений

Согласно ГОСТ 23055 - 78* для соединений, выполненных сваркой плавлением, возможно образование шести видов дефектов:

· пористость шва: сферическая, канальная, цепь пор, группа пор, линейная (протяжённая).

· шлаковые и металлические включения: разделяются на шлак компактный, шлак линейный, металлические включения, поверхностные включения.

· несплавления: по кромкам и между слоями многослойного шва.

· дефекты формы шва: чрезмерный провар корня (прожог, протёк), неровности (наплывы, вмятины и пр.), подрезы, несовпадения кромок и т.п.

Все эти дефекты ухудшают механические свойства сварных соединений и, следовательно, работоспособность конструкций. Часть из них, такие, как наружная пористость и наружные включения, прожоги, неплотность шва, подрезы, вмятины, недостаточные размеры швов и усилений, должна быть исправлена немедленно при обнаружении силами сварщика, допустившего дефект.

Наиболее опасны и недопустимы трещины всех видов, при обнаружении которых сварного соединения бракуется или же подлежит исправлению. Исправление возможно при наличии единичных трещин, а сварное соединение с множественными трещинами исправлению не подлежит. Для ликвидации единичной трещины предварительно засверливают металл на расстоянии примерно 30 - 50 мм от её концов, после чего делают разделку трещины, затем подогревают участку металла на её концах до температуры 100 - 150°С и одновременно заваривают подготовленную трещину.

Для объекта данной работы используется: Ультразвуковая дефектоскопия (УЗД) основана на использовании ультразвуковых колебаний (УЗК), которые представляют собой колебания упругой Среды со сверх-высокими частотами (более 20 кГц), не воспринимаемыми человеческим ухом. Ультразвуковые волны могут проникать в металл на большую глубину и отражаться от неметаллических включений и других дефектов. Для контроля применяют колебания частотой 0,5 - 10 Мгц.

Введение этих колебаний осуществляют пьезоэлементами (пьезопреобразователями), которые состоят из пьезопластин толщиной, равной половине длины волны, излучаемой УЗК. Пьезоэлектрические материалы обладают способностью преобразовывать действие электрического поля в механические деформации и наоборот - действие механических деформаций в электрические заряды.

Пластины изготавливают из пьезоэлектрической керамики или кварца и наклеивают на призмы из оргстекла, полистирола, капрона и других материалов, которые поглощают ультразвук и обеспечивают высокое затухание колебаний, что позволяет получать короткие зондирующие импульсы. Для приложения и съёма электрического поля на противоположных поверхностях пластины нанесени серебряные электроды.

Пьезопреобразователь обладает свойством излучать УЗК в металл через контактирующую смазку (глицерин, солидол и т.п.) синхронно с приложенным высокочастотным током и воспринимать отражённые от дефектных мест обратные УЗК, преобразуя их в электрические импульсы, фиксируемые электронно-лучевой трубкой. Чаще всего применяют наклонный преобразователь, работающий по совмещённой схеме и служащий одновременно излучателем и приёмником УЗК.

Применяются также раздельно совмещённый преобразователь, в котором одна пьезопластина служит излучателем УЗК, а другая приёмником.

Контроль, как правило, проводят с одной стороны соединения (для толщины до 50 мм), но с обеих сторон шва, как показано на рисунке. В настоящее время УЗК применяют всё более широко для проверки качества стыковых и угловых швов и даже стыков арматурной стали. Иногда для большей надёжности сомнительные места просвечивают.

2. Техническая часть

2.1 Выбор материалов для выполнения сварочных работ

Для изготовления труб диаметром 50мм используется низколегированная сталь 14ХГС. В таблицах 1 и 2 приводится химический состав и механические свойства стали. Данная сталь сваривается с ограничением по тепловому режиму, сварка возможна при подогреве до 100-1200С и последующей термообработке при правильно подобранном режиме сварки. Химический состав стали представлен в таблице 1.

Таблица 1 - Химический состав стали в процентах

Марка стали

Содержание элементов, %

С

Mn

Si

Не более

Cr

P

N

Cu

S

As

Ni

14ХГС

0.11-0.16

0.9-1.3

0.4-0.7

0.5-0.8

0.035

0.012

0.3

0,04

0.08

0.3

Механические свойства стали представлены в таблице 2.

Таблица 2 - Механические свойства при Т=200С

Марка стали

Предел прочности

Предел текучести

Относительное удлинение

Толщина образца

до 20

до 20

14ХГС

490

345

22

Для ручной дуговой сварки применяют металлические электроды - стальные стержни круглого сечения с нанесенным покрытием. Электроды изготовляют из стальной углеродистой, легированной, высоколегированной проволоки. Данные электродов приводятся в таблице 3.

Таблица 3 - Характеристика применяемых электродов

Тип электрода

Марка электрода

Марка сварочной проволоки

Род тока и полярность

Положение сварки

Коэффициент наплавки

г/Ач

Режим прокалки

T0С

Время мин.

Э42

МР-3

СВ-08, СВ-08А

Переменный постоянный

Все поло-жения

8-8,5

150-180

60-90

Электроды этой группы пригодны для сварки во всех пространственных положениях переменным и постоянным током и характеризуются достаточно большой скоростью расплавления.

Недостатками этих электродов являются пониженная стойкость против образования кристаллизационных трещин, повышенное разбрызгивание металла и выделение в процессе сварки марганцовистых соединений, вредно влияющих на организм человека.

Для газовой сварки данных труб используют горючие газы: кислород и ацетилен.

Кислород - газ без цвета и запаха, его получают из воздуха и доставляют в стальных баллонах, окрашенных в голубой цвет.

Кислород в баллонах находится под давлением до 15 МПа.

Ацетилен - бесцветный газ с резким характерным запахом, представляющий собой химическое соединение углерода и водорода. Длительное вдыхание его может привести к отравлению.

Раствор ацетилена в ацетоне под давлением 1,5-1,8 МПа доставляют к месту сварки в баллонах, окрашенных в белый цвет. Чтобы предохранить ацетилен от взрыва, в баллон набивают пористую массу из специального угля.

Ацетилен можно получить также из карбида кальция СаС2 в ацетиленовых генераторах. 8

2.4 Выбор режима сварки

Для электросварки.

Под режимом сварки понимают совокупность контролируемых параметров, обеспечивающих устойчивое горение дуги и получение швов заданных размеров, формы и свойств.

По степени влияния на процессе сварки параметры режима подразделяют на основные и дополнительные.

К основным параметрам относят диаметр стержня покрытого электрода, силу сварочного тока, его род и полярность, а также напряжение дуги.

Диаметр электродов выбирают в зависимости от толщины металла, катета шва и положения в пространстве.

Примерное соотношение между толщиной S металла и диаметром d электрода при сварке шва в нижнем положении таково:

S, mm 1 - 2 3 - 5 4 - 10 12 - 24 30 - 60

d, mm 2 - 3 3 - 4 4 - 5 5 - 6 6 и более

Для сварки труб диаметром 50мм применяется электрод диаметром 3 мм.

Cилу сварочного тока обычно устанавливают в зависимости от выбранного диаметра электрода.

При сварке швов в нижнем положении её значение, А, рассчитывают, пользуясь электрическими формулами:

Icв = Kd (1)

I cв = (20 + 6d) d (2)

где K - коэффициент, принимающий в зависимости от диаметра электрода d следующие значения:

d, mm 23456 K 25……30 30……45 35……50 40……45 45……60

I cв = (20 + 6 3) 3=144А

Род и полярность тока устанавливают в зависимости от вида свариваемого металла и его толщины. Напряжение дуги при ручной дуговой сварке изменяется в пределах 20….36 В и регламентируется производителем электродов. В процессе сварки постоянное значение напряжения поддерживают за счет низменной длины дуги, которая зависит от марки и диаметра электрода. Ориентировочно нормальная длина дуги определяется по формуле 3 в мм:

Lд = (0,5……1,1) d (3)

Длина дуги существенно влияет на качество сварного шва и его форму. 9

Для газовой сварки:

1. Мощность пламени зависит от толщины металла (5 мм) и химического состава металла (низколегированная сталь 14Г2), определяется по формуле 4:

M = cS (4)

где с - удельный коэффициент мощности пламени;

S - толщина металла, мм;

М = 80 5 = 400 л/ч.

2. Состав пламени - нормальное;

3. Скорость сварки определяется по формуле 5:

Vсв = А/S (5)

где А - коэффициент, зависящий от свойств металла (12-15) ммм/ч;

S - толщина металла (5) мм;

Vсв = 125=60 м/ч.

4. Диаметр присадочного прутка: 3 мм.

5. Угол наклона мундштука: 30 - 400 9.

В сварных соединениях некоторые швы являются рабочими, а некоторые - связующими. Рабочими называются швы, воспринимающие нагрузку от внешних усилий. При разрушении рабочего шва может разрушиться и сварное соединение. Связующими называются швы, служащие для соединения нескольких элементов конструкции (например, полос), несущих основную нагрузку.

Прочность сварного соединения должна быть не ниже прочности основного металла.

Прочность сварного соединения характеризуется величиной фактических напряжений, возникающих в нем от действующих усилий. Чтобы соединение было прочным, фактические напряжения должны быть ниже тех, при которых металл шва разрушается. Принимаемые при расчете напряжения называются расчетными и обозначаются ст.

Расчетное напряжение, т.е. напряжение от расчетных усилий, не должно превышать расчетного сопротивления металла R. т.е. у ? R

Величина расчетных сопротивлений (напряжений) регламентируется нормами, установленными для тех или иных конструкций, в зависимости от их назначения, применяемого металла, условий работы, методов контроля и пр.

Расчетное напряжение всегда ниже предела текучести данного металла. Отношение предела текучести ут к расчетному напряжению у называется запасом прочности.

nз = ут/у

где nз - запас прочности.

Для стальных изделий запас прочности по пределу текучести обычно равен nз=1,2-1,6. Для металлов, не обладающих ясно выраженным пределом текучести, запас прочности определяют по отношению к временному сопротивлению разрыву oв. В этом случае запас прочности составляет обычно nз = 3 - 4.

Расчетные сопротивления металла стыковых швов Rссв, принимаемые при расчетах сварных швов стальных строительных конструкций, регламентируются "Строительными нормами и правилами".

По этим нормам для ручной, полуавтоматической и автоматической сварки стыковых швов на стали Ст3 и Ст4 величина Rссв при растяжении равна:

для обычных методов контроля швов (наружным осмотром и обмером) Rссв = 1800 кгс/см2;

для повышенных способов контроля (рентгено- и гаммаграфия, ультразвуковая и магнитографическая дефектоскопия и др.) Rссв= 2100 кгс/см2,при срезе Rссв = 1300 кгс/см2.

Стыковые швы на прочность рассчитывают по формуле

N = Rссв*S*l (6)

где N - предельно допускаемое действующее расчетное усилие, кгс;

Rссв - расчетное сопротивление растяжению для металла шва, кгс/см2;

S - толщина металла в расчетном сечении, см;

l - длина шва, см.

Если Rссв = 1800 кгс/см2; S = 0,5 см, l = 16 см, то такой шов может безопасно работать при наибольшем усилии, равном N = 1800* 0,5 *16 = 14400 кгс.

Определим площадь сечения шва по формуле 7, если наружный Ш трубы = 50мм = R=25мм:

S = 2рR2 (7)

Где S - площадь сечения

R - радиус трубы = 25мм

S = 2*3,14*252= 3925 мм = 392,5см

По формуле 8 рассчитаем длину шва:

Lok= 2рR (8)

Lok= 2*3,14*25 = 157 мм = 16см

количество швов = 4

Lшв. = Lok*4 (9), Lшв = 16*4 =64см

Таким образом, общая длина шва 64 см.

Затем рассчитаем объем наплавленного металла по формуле 10:

V= S. * Lшв *10-3 (10)

где S-площадь сечения шва

Lшв - длина шва

V. = 392,5*64*10-3 = 25,29см-3

Определение веса наплавленного металла произведем по формуле 11:

Ghm=V* lн (11)

где Кн - коэффициент наплавки металла. V - объем наплавки металла

Ghm =25,29*8,5 =214,97 (г)

Вес электродов определим по формуле 12:

Gэл= Gнм Kрасх (12)

где Kр - коэффициент расходования металла

Cн. м-вес наплавки металла

Сэл =214,97*1,6/1000 = 0,344 кг

Определяем расчетное сопротивление шва (Rау). Согласно табл.2 приложения стыковой шов, работающий на растяжение при ручной сварке рассчитывают по пределу текучести (Ry).: равном345 МПа.

Следовательно, для рассчитываемого стыка: Rау:

Rау = 0,85 x 345 = 2293,25 МПа.

Расчетные размеры шва по конструктивным требованиям

толщина шва - t = tmin = 5 мм = 0,005 м;

длина шва 0,16 м.

Проверяем прочность шва с помощью коэффициента условий работы, который определяется по 41 СП 16.13330.2011, где = 0,9.

Таким образом, 14400* 103/0,005 * 0,16 = 180,000 МПа

Rwyyc = 204 * 0,9 = 183,6 МПа

180,000МПа 183,6 МПа,

Следовательно, условие прочности выполняется.

3. Организационная часть

3.1 Оснащенность сборочного участка

Для электросварки

Ручную дуговую сварку производят электротоком, который через электрододержатель и сварочный провод подводится к электроду от источника тока и по второму проводу - к свариваемому металлу (рис.3).

Для электросварки применяется трансформатор ТД-306 У2. (рис.4).

В таблице 4 приведены технические характеристики трансформатора.

Таблица 4 - Технические характеристики трансформатора

Марка трансформатора

Номинальный сварочный ток А

Пределы регулировки тока А

ПР %

Номинальное рабочее напряжение В

Напряжение холостого хода, В

Номинальная мощность

ТД-306 У2

250

100-300

25

30

80

19,4

Электрододержатель - приспособление для закрепления электрода и подвода к нему тока (рис.6).

Среди всего многообразия применяемых электрододержателей, наиболее безопасными являются пружинные, изготавливаемые по требованиям и классификации ГОСТ 14651-78Е: I типа - для тока до 125 А; II типа - для тока 125 - 315 А; III типа - для тока 315-500 А.

По конструкции различаются винтовые, пластинчатые, вилочные и пружинные электрододержатели.

Щитки сварочные изготавливаются двух типов: ручные и головные из легких негорючих материалов по ГОСТ 12.4.035-78.

Масса щитка не должна превышать 0,50 кг.7

Кабели и сварочные провода необходимы для подвода тока от источника питания к электрододержателю и изделию.

Кабели изготавливают многожильными (гибкими) по установленным нормативам для электротехнических установок согласно ПУЭ из расчета плотности тока до 5 А/мм2 при токах до 300 А.

Электрододержатели присоединяются к гибкому (многожильному) медному кабелю марки ПРГД или ПРГДО (ГОСТ 6731-77Е).

Применять провод длиной более 30 м не рекомендуется, так, как это вызывает значительное падение напряжения в сварочной цепи. 8

Рисунок 3 - Ручная дуговая сварка: а - переменным током; 1 - провода; 2 - дроссель; 3 - трансформатор; 4 - предохранители; 5 - рубильники; 6 - электрическая сеть; 10 - зажим; 11 - трубопровод; 12 - электрододержатель.

Рисунок 4 - Устройство трансформатора ТД-306 У2: 1,2 - катушки; 3 - сердечник; 4 - рукоятка; 5 - винт.

Рисунок 5 - Типы электрододержателей: а - вилочный; 6 - щипцовый; в - завода "Электрик"; г - с пружинящим кольцом.

При электродуговой сварке энергия, расходуемая на нагрев и плавление металла, выделяется дуговым разрядом, возникающим между свариваемым металлом и электродом. 5

Для газовой сварки

Для выполнения ручной газовой сварки используют баллоны, редукторы, шланги и горелку.

Давление горючих газов, находящихся в баллонах, снижают до давления, необходимого для работы горелки (0,1-0,4 МПа), ацетиленовыми и кислородными редукторами.

Из баллона можно отбирать газ до остаточного давления не ниже 0,05 МПа.

Полностью выпускать газ из баллона нельзя, так как при этом на заводе потребуется проверка баллона.

Сварочная горелка служит для смешения горючего газа с кислородом и получения сварочного пламени. Количество кислорода и ацетилена, подаваемое к горелке, регулируют соответственно вентилями.

В инжекторе кислород и ацетилен смешиваются, и через наконечник горючая смесь поступает в мундштук. Смесь сгорает на выходе из мундштука, создавая пламя, которое расплавляет металл.

Горелки комплектуются несколькими сменными наконечниками, позволяющими сваривать детали различной толщины.

Ручная газовая сварка выполняется с использованием кислорода и ацетилена (рис. 7).

Ацетилен может вырабатываться при помощи генератора или поставляется к месту сварки в баллонах белого цвета с черной надписью "ацетилен".

Для предотвращения взрыва ацетиленовый баллон заполняется пористой массой (пемза, активированный уголь и т.д.).

Рукава служат для подвода газа в горелку или резак. Рукава резиновые для газовой сварки и резки металлов изготавливаются по техническим условиям ГОСТ 9356-75 или по требованиям международного стандарта Per. № ИСО 3821-77. Требования ГОСТа 9356-75 распространяются на резиновые рукава с нитяным каркасом, применяемые для подачи под давлением ацетилена, городского газа, пропана, бутана, жидкого топлива и кислорода к инструментам для газовой сварки или резки металлов. При монтаже санитарно-технических систем наиболее широко применяют ручную газовую сварку (рис. 7). В процессе сварки пламя газов, сжигаемых на выходе из горелки (рис. 9), нагревает кромки соединяемых деталей. Температура пламени достигает 3150°С.

Рисунок 6 - Оборудование для газовой сварки: 1,4 - баллоны, 2, 3 - редукторы, 5 - шланги; 6 - труба; 7 - горелка

Рисунок 7 - Схема одноступенчатого редуктора: а - редуктор закрыт; б - редуктор открыт; 1 - клапан; 2,6 - манометры; 3, 8 - камеры; 4, 10 - пружины; 5 - предохранительный клапан; 7 - вентиль; 9 - мембрана; 11 - винт.

Рисунок 8 - Горелка: а - общий вид; б - разрез; в - сменные наконечники; 1 - мундштук; 2 - наконечник; 3 - инжектор; 4,7 - вентили; 5, 6 - ниппеля.

3.2 Технология сборки и сварки трубопровода диаметром 50 мм в поворотном положении

Сварка поворотных стыков производится в горизонтальном положении с поворачиванием труб, а в вертикальном и потолочном положениях - без поворота труб.

Сварка без поворачивания труб применяется при приварке к трубопроводам отводов и компенсаторов, при сварке звеньев труб между собой и при монтаже узлов.

Наиболее ответственными и сложными являются потолочные и горизонтальные швы соединений вертикально расположенных труб.

Стыки собирают в приспособлениях и прихватывают в двух точках. Точки прихвата располагаются симметрично. Разделка кромок не производится. При толщине стенки меньше 5 мм, прихватку выполняют электродом диаметром 3-5 мм. Стыки изделия сваривают в два слоя - корневым швом и облицовочным валиком. Каждый последующий валик горизонтального стыка укладывается в противоположном направлении;

"Замковые" участки последующих валиков смещают относительно предыдущих швов. 4

Рисунок 9 - Сварка труб в поворотном положении

Технология подготовки к началу сваривания следующая: перед началом работы требуется подготовить металл, то есть провести разметку, резку и сборку труб. Для этого нужно установить отрезки труб в исходном положении и очистить каждый стык от шлака, ржавчины, грязи, старой краски и прочих наслоений. После этого следует провести разметку, то есть с помощью рулетки, угольника и чертилки перенести размеры детали с чертежа на металл. Можно для этой цели использовать металлический шаблон. Следует учитывать, что отрезки труб в процессе сварки несколько укорачиваются. Поэтому следует оставлять припуск, пользуясь расчетом 1 мм на поперечный стык, 0,1-0,2 на 1 мм продольного шва.

Так как трубы имеют преимущественно круглое сечение, при заготовках отрезков труб используют чаще всего термическую резку.

Примерно треть от общей трудоемкости составляет сборка деталей под сварку. При сборке следует учитывать производителя, исходить из серии изделия, диаметра труб и других факторов. Для сборки используют так называемые сварочные прихватки. Это короткие легкие швы с поперечным сечением до одной трети полноценного шва. Длина прихватки зависит от толщины и диаметра трубы. Она может быть от 20 до 120 мм. Сварочные прихватки используют для предупреждения смещения отрезков труб, что может привести к трещинам при охлаждении. При сварке газом или электричеством труб большой толщины и диаметра или сварке в неудобном положении сборку выполняют с использованием механических приспособлений.

Для того чтобы произвести зажигание дуги, производят короткое замыкание конца электрода с трубой и отрывом электрода от поверхности трубы. Расстояние должно быть равно величине диаметра покрытого электрода. Это нужно для нагревания металла до нужной температуры в катодном пятне. Нагревание произведет выброс первичных электронов.

Для зажигания дуги применяются следующие способы: впритык и скольжением.

При зажигании впритык металл греется в точке короткого замыкания. А при зажигании дуги методом скольжения металл нагревается сразу в нескольких точках по поверхности сварки трубы.

Чаще используют второй метод. Первый же используется при сварке узких труб небольшого диаметра в неудобном положении.

При строительстве различных трубопроводов важно знать о том, что технология сварки поворотных стыков, неповоротных, а также горизонтальных, различна.

Сварка поворотных стыков производится в три слоя. Сначала следует разделить стык на четыре условных отрезка. Первые два сваривают, потом делают поворот трубы на 180 градусов, после этого сваривают оставшиеся отрезки. Потом трубу следует повернуть еще на девяносто градусов и варить второй слой. И завершают сваривать стык, еще раз повернув трубу на 180 градусов и сваривая повторно оставшиеся два отрезка.

При сварке поворотных стыков металлических труб, диаметр которых больше 500 мм, используется обратноступенчатая технология. Пользуясь этим способом, мы разделяем стык на короткие участки длиной от 150 до 300 мм в зависимости от диаметра трубы. Слой 3 также накладывается при вращениях трубы.

При сварке поворотных стыков металлических газовых труб, диаметр которых не превышает 200 мм, стык на условные отрезки не делится, а сваривается применением сплошного шва при вращениях труб во время сварки. Слои 2 и 3 при сварке газовых труб производятся в противоположном направлении. Каждый слой должен перекрывать предыдущий слой на 10-15 мм.

Рисунок 10 - Схема наложения швов при поворотной сварке

Наплавленный металл связующих швов деформируется вместе с основным металлом элементов, связанных данным швом. Если связующий шов разрушится, то соединение может работать, так как нагрузка воспринимается элементами основного металла. На прочность рассчитываются только рабочие швы.

Сварочный пост - это рабочее место сварщика.

Стационарный сварочный пост РДС комплектуется:

1. Система вентиляции,

2. освещение,

3. заземление,

4. источник питания сварочной дуги (ИПД),

5. сварочные кабели - прямой и обратный,

6. электрододержатель,

7. стол и стул сварщика,

8. стакан для электродов,

9. ёмкость для металлоотходов и огарков,

10. инструменты: (металлическая щётка, щётка смётка, напильник, молотки, линейка, угольник, чертилка, шаблон мел, ножовка, ножницы, зубило, молоток для шлака, клеймо).

11. сборочно-сварочные приспособления,

12. спецодежда,

13. маска (щиток),

14. медицинская аптечка,

15. средства пожаротушения.

Площадка для сварки конструкции: должна быть с ровным полом, оборудована специальными защитными шторками, находиться под навесом или в цеху.

На нестационарных рабочих местах изделие при сварке неподвижно, а сварщик перемещается от шва ко шву по трубам.

В зависимости от типа рабочего места сварщика зависит и его организация, а также оснащенность его оборудованием и инструментом.

Рабочие места сварщиков комплектуются:

а) стационарные рабочие места: сварочным оборудованием, устройствами для сварки и инструментом; приспособлениями для подачи и уборки деталей; приспособлениями для крепления или размещения деталей при сварке; устройствами для вентиляции, как правило, стационарными; кабиной сварщика;

б) нестационарные рабочие места; сварочным оборудованием, устройствами для сварки, инструментом; приспособлениями для крепления или размещения узлов или изделий при сварке; переносными

устройствами для вентиляции зоны сварки; устройствами (переносными) для защиты зоны сварки от излучения дуги.

От правильной организации рабочего места сварщика, оснащенности его необходимым оборудованием, инструментом и приспособлениями, правильного размещения этого оборудования на рабочем месте зависит и эффективность его труда и производительность.

Основными элементами организации труда сварщиков на рабочих местах, от которых зависит наивысшая производительность труда и высокое качество, будут следующие:

а) своевременность получения задания;

б) наличие соответствующего оборудования, поддержание его в работоспособном состоянии и правильное его размещение;

в) своевременность доставки на рабочие места материалов, заготовок, деталей и др.;

г) высокая надежность оборудования и высокое качество материалов;

д) действенный контроль качества сварных соединений;

е) поддержание на рабочем месте надлежащего порядка.

Из изложенного следует, что организация рабочего места сварщика в каждом конкретном случае должна быть тщательно продумана и научно обоснована, так как от этого зависит эффективность его труда.

Технологический процесс сборки и сварки трубопровода Ш 50 мм в поворотном положении в базовых условиях представлен в таблице 5.

Таблица 5 - Маршрутная карта: Выполнение сборки и сварки трубопровода Диаметром 50 мм в поворотном положении

Опе-рации

Наимено-вание операции

Эскиз

Материалы

Оборудо-

вание

Инструмент

Сила тока

Диа-метр

элек-трода

1

2

3

4

5

6

7

8

1

Разметка

сталь

14ХГС

Мел,

Метр

2

Резка

Резак, ножовки для резки металла

3

Подготовка под сварку

Щетка по металлу, молоток, напиль-ник

4

Прихватка

Элек-троды МР-3

Держак, сварочные провода, сварочный трансформатор

Шлако-

Отдели-тель

160А

3 мм

5

Сварка

Электроды МР-3

Держак, сварочные провода, сварочный трансформа-тор

Шлако-

Отдели-тель

160А

мм

3.2 Контроль качества сварочных работ

Контроль сварных соединений производится в три этапа:

· Предварительный контроль - проверка основного металла, электродов, качества сборки, подготовки под сварку, состоянию сварочной аппаратуры, квалификации сварщика.

· Контроль в процессе сварки - проверка правильности выбранного режима, соблюдения технологии

· Окончательный контроль качества сварных соединений.

Для контроля качества сварного шва могут применяться различные методы, основанные на использовании разных материалов, приспособлений и устройств.

Государственными стандартами определены следующие способы, с помощью которых можно оценить, насколько качественно была проведена сварка и последующая зачистка сварных швов.

Визуальный осмотр

Самый простой и очевидный метод, призванный определить явные дефекты шва. Он может производиться без сторонних приспособлений либо с применением лупы.

В рамках подготовки к осмотру производится специальная обработка сварных швов: поверхность очищают от загрязнений и шлаков, некоторые виды сталей дополнительно подвергают химической обработке.

При осмотре оценивают размер сварного шва, замеряют обнаруженные дефектные участки. Если были обнаружены трещины, их границы определяют засверливанием, подрубкой, шлифовкой и завершающим травлением. Трещины обнаруживаются при нагреве металла, выявляясь зигзагообразными линиями.

Если должна быть произведена термическая обработка сварных швов, то внешний осмотр проводится и до процедуры, и после нее.

Просвечивание сварного шва

В этом случае используют гамма-лучи или рентген (пленку прикладывают с обратной стороны металлической заготовки). Если оборудование для сварных швов подвело, то в местах, где имеются дефекты, на пленке будут видны пятна более темного оттенка.

Именно так можно выявить шлаковые включения, непровар и поры. Метод не дает возможности выявить трещины, расположенные под углом менее пяти градусов относительно центрального луча и слипания металлов без шлаковой или газовой прослойки.

Этот метод позволяет определять дефекты в металлических заготовках толщиной до 6 сантиметров. Если в швах обнаруживаются дефекты, просвечивают удвоенное число стыков. Если дефекты снова обнаружены, то проверяют швы всех заготовок, выполненные этим сварщиком, а после удаления дефектов швы проверяют вновь.

Магнитографический метод

В его основе лежит обнаружение поля рассеивания, которое образуется на месте наличия дефектов при намагничивании заготовки. Рассеиваемые поля фиксируются на магнитной ленте, прижатой к поверхности швов. Запись проводится на дефектоскоп, а потом считывается. Если сварка и обработка сварных швов были проведены недостаточно качественно, то этот метод выявит трещины, поры, непровары, шлаковые включения.

С меньшей точностью таким образом можно обнаружить поперечные трещины, широкие непровары, округлые поры.

Метод подходит для работы с металлом толщиной в 0,4-1,2 сантиметра.

Проверка ультразвуком

Этот способ основан на отражении направленных пучков звуковых колебаний от металлов и несплошностей в нем. Он используется для контроля качества сварного шва в цветных металлах и стали.

Для того чтобы получить ультразвуковые волны, применяют пьезоэлектрические кварцевые пластины, вставленные в щуп. Отраженные колебания улавливаются искателями, преобразуются в электрический импульс, подаются на усилитель, воспроизводятся индикатором. Чтобы обеспечить акустический контакт, поверхность изделия покрывается автолом или компрессорным маслом.

Вскрытие шва

Этот способ используется при необходимости определить дефекты, которые подозреваются, но не были выявлены при использовании других методов. В этом случае применяется оборудование для сварных швов, которым вскрывается подозрительный участок соединения. В этом случае просверливается углубление диаметром несколько больше ширины шва, а потом поверхность шлифуется и протравливается раствором азотной кислоты. Границы шва при этом проявляются очень отчетливо.

Химический метод

До начала испытания необходима тщательная зачистка сварных швов от шлаков и загрязнений. В этом случае наружный слой металла обрабатывается четырехпроцентным раствором фенолфталеина либо накрывается тканью, пропитанной пятипроцентным раствором азотнокислого серебра. Изделие нагнетается смешанным с аммиаком воздухом, и в местах, где имеются локальные течи, азотнокислое серебро становится серебристо-черным, а фенолфталеин - красным.

Цветная дефектоскопия (ГОСТ 3242-79)

Полость дефекта наполняется флуоресцентным раствором, которая светится под действием ультрафиолетового луча.

Цветная дефектоскопия дает возможность выявлять дефекты при помощи проявляющей белой краски. В этом случае проявляется рисунок, повторяющий форму дефекта.

Такими методами можно выделить поверхностный дефект сварного шва - в основном это трещины, которые образуются в сварных соединениях.

Проба керосином

Этот метод может использоваться при необходимости определения плотности сварного шва на металлическом соединении толщиной до одного сантиметра. Он позволяет выявить дефекты, размер которых составляет от 0,1 миллиметра.

В этом случае шов покрывается суспензией из каолина либо мела и подсушивается, а другая сторона два или три раза смачивается керосином. Если шов проницаем, на поверхности, смазанной суспензией, проступят желтые жирные пятна. Срок испытания составляет порядка четырех часов.

Испытание пневматикой

В этом случае с одной стороны шва создается избыточное воздушное давление, а другая промазывается мыльной пеной, на которой под воздействием воздуха, проникающего через неплотности, будут образовываться пузыри.

Вакуумный метод

Такие испытание предназначены для определения плотности днища резервуаров и прочих подобных конструкций. Они способны выявить сквозную неплотность размером от 0,1 миллиметра на металлических заготовках толщиной до 1,5 сантиметров.

Пенным индикатором в этом случае выступает мыльный раствор, а для создания вакуума применяют сегментные, плоские и кольцевые камеры.

Технологические пробы

Способ позволяет определить сплавление металла, характер излома (по металлу или шву), качество зачистки сварных швов, внутренние дефекты и непровары. Место соединения изучают при помощи лупы с десятикратным увеличением. В основном этот метод применяют при испытании сварочных материалов и новых технологий, а также при аттестации сварщиков.

Выявление склонности шва к коррозии

Этот способ предназначен для проверки склонности ферритных, аустенитных сталей и их сплавов к межкристальной коррозии и позволяет оценить качество оборудования для зачистки сварных швов. Образцы на протяжении какого-то времени подвергают воздействию особого раствора, затем моют, сушат и сгибают под углом 90 градусов. Если на поверхности появятся трещины, это будет означать, что образец не прошел испытания.

Металлографический метод

Этот способ позволяет определить глубину проплавления металла и наличия внутренних дефектов посредством осмотра образца, вырезанного поперек сварного шва абразивным или режущим инструментом (к примеру, может использоваться огневая резка или фрезер по металлу). Поверхность шлифуется и подвергается травлению реактивами, которые позволяют точно выявить ее структуру.

Подобные исследования дают возможность достаточно точно определить, насколько четко соблюдалась технология сварки и обработки швов.

Проверка на твердость

Этот способ используют для проверки качества термической обработки швов. Применяется на трубопроводах их хромомарганцевых, углеродистых и легированных сталей ферритных и перлитных классов.

Твердость измеряется по окружности стыков на изделиях, диаметр которых составляет более 100 миллиметров.

3.3 Охрана труда

Каждый сварщик обязан перед началом работы проверить исправность аппаратуры и готовность места сварки в противопожарном отношении (наличие средств пожаротушения - ящиков с песком, лопат, ведер с водой, огнетушителей).

Во время работы нельзя допускать попадания искр, расплавленного металла, пламени горелки, электродных огарков на сгораемые конструкции и материалы.

После выполнения сварочных работ необходимо тщательно осмотреть рабочее место, нижележащие площадки и этажи и в случае обнаружения воспламенения полить их водой.

К проведению сварочных работ допускаются сварщики, прошедшие противопожарный минимум и получившие специальные квалификационные удостоверения и специальный талон на право допуска их к проведению огневых работ.

Разрешение на право проведения огневых работ выдается начальником или главным инженером строительства.

При проведении сварочных работ запрещается:

а) приступать к работе при неисправной аппаратуре;

б) производить сварку или резку свежеокрашенных конструкций до полного высыхания краски;

в) пользоваться при сварке одеждой и рукавицами со следами масел и жиров, бензина и других горючих жидкостей;

г) хранить в сварочных кабинах или в зоне сварки горючие либо взрывчатые предметы и материалы;

д) допускать к сварочным работам сварщиков или учеников сварщиков, не сдавших испытаний по противопожарной безопасности при выполнении сварочных работ;

е) выполнять сварку емкостей, содержащих горючие или взрывчатые вещества, а также сварку сосудов, находящихся под давлением, сварку работающего оборудования или оборудования, находящегося под напряжением;

ж) допускать соприкосновение электрических проводов с баллонами газа;

з) перегревать баллоны с газами;

и) работать вблизи газовых баллонов инструментом, вызывающим появление искры;

к) вешать на газопроводы тряпки, промасленную ветошь;

л) выпускать полностью газ из баллонов (давление газа при его расходовании снижают до 0,05-0,1 МПа, т.е. до 0,5-1 кгс/см2) | м) переносить баллоны на руках, плечах.

При электросварочных работах во избежание поражения электрическим током необходимо:

а) надежно заземлять корпуса источников питания сварочной дуги и сварочного вспомогательного оборудования, а также свариваемые изделия. Заземление осуществляют медным проводом, один конец которого прикрепляют к специальному болту с надписью "Земля" на корпусе источника питания сварочной дуги, а второй - к заземляющей шине.

Заземление передвижных источников питания производится до их включения в силовую сеть, а снятие заземления - только после отключения от силовой сети;

б) использовать для подключения источников питания сварочной дуги к сети настенные ящики с рубильниками, предохранителями и зажимами. Длина проводов сетевого питания должна быть не более 10 м.

При необходимости нарастить провод применяют соединительную муфту с прочной изоляционной оболочкой. Провод подвешивают на высоте 2,5-3,5 м над землей. Спуски заключают в металлические трубы. Вводы и выводы должны иметь втулки или воронки, предохраняющие провода от перегибов, а изоляцию от порчи;

в) размещать сварочное оборудование при наружных работах под навесом, в палатке или в будке для предохранения от дождя и снега.

При отсутствии таких укрытий сварочные работы не производят, а сварочную аппаратуру защищают от воздействия атмосферных осадков;

г) возлагать на электриков обязанности по присоединению электросварочного оборудования к сети и отсоединению его, а также по наблюдению за его исправным состоянием в процессе эксплуатации;


Подобные документы

  • Технологические процессы сборки и сварки трубопровода диаметром 50 мм в поворотном положении. Выбор материалов для выполнения сварочных работ и сварочного оборудования. Режим сварки, контроль качества работ. Расчет общего времени сварки, заработной платы.

    курсовая работа [3,6 M], добавлен 23.12.2014

  • Выбор материалов для выполнения сварочных работ и режима сварки. Технологическая карта на выполнение сборки концевых стыков труб диаметром 150 мм, изготовленных из стали марки 12Г2СБ при помощи ручной дуговой сварки. Контроль качества сварочных работ.

    курсовая работа [573,5 K], добавлен 14.11.2014

  • Процесс ручной дуговой сварки электродами с основным видом покрытия и автоматической сварки порошковой проволокой в защитных газах. Расчет предельного состояния по условию прочности, времени сварки кольцевого стыка и количества наплавленного металла.

    курсовая работа [167,8 K], добавлен 18.05.2014

  • Краткое сведение о металле и свариваемости стали марки 09Г2С. Оборудование сварочного поста для ручной дуговой сварки колонны. Основные достоинства металлоконструкций. Технология ручной дуговой сварки. Дефекты сварных швов. Контроль качества соединения.

    дипломная работа [1,8 M], добавлен 08.12.2014

  • Классификация и обозначение покрытых электродов для ручной дуговой сварки. Устройство сварочного трансформатора и выпрямителя. Выбор режима сварки. Техника ручной дуговой сварки. Порядок проведения работы. Процесс зажигания и строение электрической дуги.

    лабораторная работа [1,1 M], добавлен 22.12.2009

  • Сущность, основные достоинства и недостатки ручной дуговой сварки покрытыми электродами. Сущность, достоинства и недостатки сварки в среде защитных газов плавящимся электродом. Выбор сварочных материалов. Сварочно-технологические свойства электродов.

    курсовая работа [4,6 M], добавлен 22.03.2012

  • Методика и принципы сварки регистра. Выбор и характеристика материала трубопровода. Применяемое оборудование, инструменты и приспособления. Расчет режимов сварки и контроль качества. Техника электро- и пожаробезопасности при изготовлении трубопровода.

    контрольная работа [28,0 K], добавлен 20.12.2015

  • Основные понятия и способы сварки трубопроводов. Выбор стали для газопровода. Подготовка кромок труб под сварку. Выбор сварочного материала. Требования к сборке труб. Квалификационные испытания сварщиков. Технология и техника ручной дуговой сварки.

    дипломная работа [2,9 M], добавлен 25.01.2015

  • История возникновения сварки, ее классификация и виды. Характеристика высокопроизводительных видов ручной дуговой сварки. Назначение и описание конструкции трубопровода. Особенности организации контроля качества и безопасности при сварочных работах.

    дипломная работа [30,6 K], добавлен 24.07.2010

  • Выбор и обоснование способов сварки и сварочных материалов, рода тока и полярности. Характеристика основного металла. Описание механизированного сборочно-сварочного приспособления. Расчет режимов для ручной дуговой и механизированной сварки в среде СО2.

    курсовая работа [221,6 K], добавлен 20.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.