Расчет параметров посадки и калибров для проверки отверстия и вала
Расчет параметров посадки и калибров для проверки отверстия и вала. Отклонения отверстия и вала. Схема расположения полей допусков посадки. Предельные размеры. Допуски отверстия и вала. Зазоры. Допуск зазора. Обозначение размеров на рабочих чертежах.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 29.07.2008 |
Размер файла | 584,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ТУЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
КАФЕДРА ИНСТРУМЕНТАЛЬНЫЕ И МЕТРОЛОГИЧЕСКИЕ СИСТЕМЫ
Курсовая работа по метрологии, стандартизации и сертификации
Тула 2006
Аннотация.
В процессе выполнения курсовой работы были рассчитаны параметры посадки, написаны все виды отклонений размеров на конструкторских и рабочих чертежах, рассчитаны калибры для проверки отверстия и вала. Также произведены расчеты размерной цепи, в процессе которых решается задача достижения заданной точности замыкающего размера. Эти расчеты были произведены методом полной взаимозаменяемости и теоретико-вероятностным методом. В третьей части курсовой работы была рассмотрена обработка результатов многократных измерений с помощью закона распределения вероятности.
СОДЕРЖАНИЕ.
Аннотация
Часть 1.Расчет параметров посадки и калибров для проверки отверстия и вала.
1.Отклонения отверстия и вала. Схема расположения полей допусков посадки ……………………………………………………………………………4
2. Предельные размеры…………………………………………………………..4
3. Допуски отверстия и вала……………………………………………………..5
4. Зазоры…………………………………………………………………………..5
5. Средний зазор………………………………………………………………….5
6. Допуск зазора (посадки)………………………………………..……………..5
7. Обозначение предельных отклонений размеров на конструкторских чертежах…………………………………………………………………..……….5
8. Обозначение размеров на рабочих чертежах………………………………...6
9. Расчет калибров для проверки отверстия и вала. Схема расположения полей допусков калибров……………………………………………………….7
Часть2.Расчет сборочных размерных цепей методом полной взаимозаменяемости и теоретико-вероятностным методом.
1. Нахождение допусков и отклонений составляющих размеров методом полной взаимозаменяемости. Прямая задача…………………………………..9
2. Нахождение предельных значений замыкающего размера методом полной взаимозаменяемости. Обратная задача………………………………………..12
3. Нахождение допусков и отклонений составляющих размеров теоретико-вероятностным методом. Прямая задача…………………………………..….13
4. Нахождение предельных значений замыкающего размера теоретико-вероятностным методом. Обратная задача………………………....................16
Часть 3. Обработка результатов многократных измерений.
1. Определение среднего арифметического и стандартного отклонений для данных……………………………………………………………………………17
2. Проверка на наличие или отсутствие промахов…………………………….18
3. Построение гистограммы и проверка гипотезы о виде закона распределения вероятности…………………………………………………….18
4. Проверка нормальности закона распределения по критерию Пирсона…..20
5. Построение теоретической кривой плотности вероятности………..……. 21
5. Представление результата в виде доверительного интервала……………..21
Список используемой литературы.
Часть 1
Расчет параметров посадки и калибров для проверки отверстия и вала
Рассчитать параметры посадки o 40 H7/d8; написать все виды обозначения предельных отклонений размеров на конструкторских и рабочих чертежах; рассчитать калибры для проверки отверстия вала заданной посадки.
1. Отклонения отверстия и вала по ГОСТ 25347-82:
ES = +25 мкм, es =-80 мкм
EI = 0; ei = -119 мкм
2
Рис.1. Схема расположения полей допусков посадки
2. Предельные размеры:
мм;
мм;
мм;
мм;
3. Допуски отверстия и вала:
мм;
мм;
либо
мм;
мм.
4. Зазоры:
мм;
мм
либо
мм;
мм.
5. Средний зазор:
мм.
6. Допуск зазора (посадки)
мм
либо
мм.
7. Обозначение предельных отклонений размеров на конструкторских чертежах:
а) условное обозначение полей допусков
б) числовые значения предельных отклонений:
в) условное обозначение полей допусков и числовых значений предельных отклонений:
8. Обозначение размеров на рабочих чертежах:
9. Расчет калибров для проверки отверстия и вала.
Допуски и отклонения калибров по ГОСТ 24853-81:
а) для калибров-пробок
Z = 3,5 мкм, Y = 3 мкм, H = 4 мкм;
б) для калибров-скоб
Z1 = 6 мкм, Y1 = 5 мкм, H1 = 7 мкм;
2
Рис. 2 Схема расположения полей допусков калибров
Калибры для проверки отверстия
Пробка ПР
Исполнительный размер пробки ПР:
мм;
Средневероятный износ мкм;
мкм;
Износ пробки рабочим допустим до размера:
мм;
Износ пробки цеховым контролером допустим до размера:
мм;
Пробка НЕ
Исполнительный размер пробки НЕ:
мм;
Калибры для проверки вала
Скоба ПР
Исполнительный размер скобы ПР:
мм;
Средневероятный износ мкм;
мкм;
Износ скобы рабочим допустим до размера:
мм;
Износ скобы цеховым контролером допустим до размера:
мм;
Скоба НЕ
Исполнительный размер скобы НЕ
мм;
Часть 2
«Расчет сборочных размерных цепей методом полной взаимозаменяемости и теоретико-вероятностным методом»
№ 1. Назначить допуски и отклонения составляющих размеров с таким расчетом, чтобы обеспечить значение замыкающего размера, равное мм.
Расчет произвести методом полной взаимозаменяемости.
На детали, входящие в сборочный комплект, назначены следующие значения номинальных размеров: мм; мм; мм; мм; ;
1. Согласно заданию имеем:
мм;
мм;
мм;
мм;
мм.
2. Составим график размерной цепи:
2
3. Составим уравнение размерной цепи:
;
4. Произведем проверку правильности назначения номинальных значений составляющих размеров:
Т.к. по условию задачи , следовательно, номинальные размеры назначены правильно.
5. Осуществим увязку допусков, для чего, исходя из величины , рассчитаем допуски составляющих размеров.
6. По приложению 1 устанавливаем, что полученное значение больше принятого для квалитета 10, но меньше, чем для квалитета 11.
Установим для всех размеров допуски по 11 квалитету, тогда:
мм, мм, мм, мм, мм.
7. Произведем проверку правильности назначения допусков составляющих размеров:
мм.
Полученная сумма допусков превышает заданный допуск замыкающего размера на величину равную 0,03 мм, что составляет 5% от . Следовательно допуски можно оставить без изменения.
8. Осуществим увязку средних отклонений, для чего примем следующий характер расположения полей допусков составляющих размеров.
мм.
мм,
мм,
мм.
Сведем данные для расчета в таблицу 1.
Таблица расчетных данных
Таблица 1
Обозначение размера |
Размер |
||||
+1 |
-0,045 |
-0,045 |
|||
-1 |
0 |
0 |
|||
-1 |
0 |
0 |
|||
+1 |
-0,045 |
-0,045 |
|||
+1 |
-0,8 |
-0,8 |
мм.
Произведем увязку за счет среднего отклонения , принятого в качестве увязочного.
мм.
Предельные отклонения :
мм;
мм.
Таким образом, мм.
№2. Найти предельные значения замыкающего размера при значениях составляющих размеров, полученных в результате решения примера №1. Расчет произвести методом полной взаимозаменяемости.
Сведем данные для расчета в таблицу 2.
Таблица расчетных данных
Таблица 2
Обозначение размера |
Размер |
||||||||
+1 |
8 |
+1,345 |
0,09 |
+8 |
+1,345 |
0,09 |
|||
-1 |
20 |
0 |
0,13 |
-20 |
0 |
0,13 |
|||
-1 |
40 |
0 |
0,16 |
-40 |
0 |
0,16 |
|||
+1 |
8 |
-0,045 |
0,09 |
+8 |
-0,045 |
0,09 |
|||
+1 |
44 |
-0,8 |
0,16 |
+44 |
-0,8 |
0,16 |
1.Номинальное значение замыкающего размера:
мм.
2. Среднее отклонение замыкающего размера:
мм.
3.Допуск замыкающего размера:
мм.
Предельные отклонения замыкающего размера
мм.
мм.
Сравниваем полученные результаты с заданными
,
Т.к. условия не выполняются, то осуществим проверку допустимости расчетных значений :
Полученные значения не превышают установленных 10%, следовательно, изменения предельных отклонений составляющих размеров не требуется.
№ 3. Назначить допуски и отклонения составляющих размеров с таким расчетом, чтобы обеспечить значение замыкающего размера, равное мм.
Расчет произвести вероятностным методом, исходя из допустимого процента брака на сборке, равного 0,27 %.
На детали, входящие в сборочный комплект, назначены следующие значения номинальных размеров: мм; мм; мм; мм, .
1. Согласно заданию имеем:
мм;
мм;
мм;
мм;
мм.
2. Составим график размерной цепи:
2
3. Составим уравнение размерной цепи:
;
4. Произведем проверку правильности назначения номинальных значений составляющих размеров:
Т.к. по условию задачи , следовательно, номинальные размеры назначены правильно.
5. Осуществим увязку допусков, для чего, исходя из величины , рассчитаем допуски составляющих размеров.
6. По приложению 1 устанавливаем, что полученное значение больше принятого для квалитета 12, но меньше, чем для квалитета 13.
Установим для всех размеров допуски по 12 квалитету, тогда:
мм, мм, мм, мм, мм.
7. Произведем проверку правильности назначения допусков составляющих размеров:
мм.
Полученная сумма допусков оказалась меньше заданного допуска замыкающего размера на величину равную 0,045 мм. Для того, чтобы полностью использовать заданный допуск замыкающего размера, ужесточим допуск размера А1 и найдем его:
Откуда T1 = 0,24мм.
8. Осуществим увязку средних отклонений. Увязку будем производить за счет среднего отклонения размера А1 , принятого в качестве увязочного.
Примем следующий характер расположения полей допусков составляющих размеров : мм,
мм,
мм,
мм.
Сведем данные для расчета в таблицу 3.
Таблица расчетных данных
Таблица 3
Обозначение размера |
Размер |
||||||||
8 |
+1 |
0,24 |
+0,2 |
0,024 |
|||||
-1 |
0 |
0,21 |
0 |
0 |
0 |
0 |
|||
-1 |
0 |
0,25 |
0 |
0 |
0 |
0 |
|||
+1 |
-0,075 |
0,15 |
+0,2 |
0,015 |
-0,06 |
-0,06 |
|||
+1 |
-0,125 |
0,25 |
+0,2 |
0,025 |
-0,1 |
-0,1 |
Найдем средние отклонения размера А1:
; мм.
Предельные отклонения А1:
мм;
мм.
Таким образом, мм.
№4. Найти предельные значения замыкающего размера при значениях составляющих размеров, полученных в результате примера №3. Расчет произвести вероятностным методом, исходя из допустимого процента брака на сборке, равного 0,27 %.
Сведем данные для расчета в таблицу 4.
Таблица расчетных данных
Таблица 4
Обозначение Размера |
Размер |
||||||||||
+1 |
0,636 |
0,24 |
+0,2 |
0,024 |
0,66 |
0,66 |
0,24 |
0,0576 |
|||
-1 |
0 |
0,21 |
0 |
0 |
0 |
0 |
0,21 |
0,0441 |
|||
-1 |
0 |
0,25 |
0 |
0 |
0 |
0 |
0,25 |
0,0625 |
|||
+1 |
-0,075 |
0,15 |
+0,2 |
0,015 |
-0,06 |
-0,06 |
0,15 |
0,0225 |
|||
+1 |
-0,125 |
0,25 |
+0,2 |
0,025 |
-0,1 |
-0,1 |
0,25 |
0,0625 |
1.Номинальное значение замыкающего размера:
мм.
2. Среднее отклонение замыкающего размера:
мм.
3.Допуск замыкающего размера:
мм.
4.Предельные отклонения замыкающего размера
мм.
мм.
5.Сравниваем полученные результаты с заданными
Следовательно, изменения предельных отклонений составляющих размеров не требуется.
Часть 3
«Обработка результатов многократных измерений»
В таблице 1 приведены 100 независимых числовых значений результата измерения. Проверить гипотезу о нормальности распределения вероятности результатов измерения. Записать результат в принятой форме, исходя из уровня доверительной вероятности Р=0,98. Представить два варианта доверительного интервала - для нормального и для неизвестного закона распределения вероятности среднего арифметического значения измеряемой величины.
Таблица 1.
30,36 |
29,99 |
30,41 |
30,08 |
30,17 |
30,30 |
30,10 |
30,33 |
30,43 |
30,19 |
|
30,38 |
29,90 |
29,94 |
30,32 |
30,35 |
30,48 |
30,32 |
30,19 |
30,24 |
29,84 |
|
30,08 |
30,02 |
30,09 |
30,02 |
30,37 |
30,14 |
30,25 |
30,10 |
30,15 |
30,13 |
|
29,93 |
30,00 |
30,32 |
30,24 |
30,14 |
30,31 |
30,28 |
30,22 |
30,12 |
30,19 |
|
30,10 |
30,24 |
30,16 |
30,17 |
30,23 |
30,00 |
30,13 |
30,02 |
30,34 |
30,16 |
|
29,88 |
30,30 |
30,17 |
30,15 |
30,17 |
30,13 |
30,29 |
30,26 |
30,35 |
30,18 |
|
30,48 |
30,02 |
30,20 |
30,11 |
30,37 |
29,97 |
29,97 |
30,00 |
30,09 |
30,35 |
|
30,18 |
30,29 |
29,88 |
30,15 |
30,29 |
30,12 |
30,19 |
30,31 |
30,13 |
30,25 |
|
30,19 |
30,13 |
29,88 |
30,37 |
30,24 |
30,10 |
30,07 |
30,00 |
30,14 |
30,22 |
|
30,09 |
30,22 |
30,22 |
30,07 |
30,14 |
29,83 |
30,01 |
29,96 |
30,22 |
30,15 |
1. Определим среднее арифметическое и стандартное отклонение для данных таблицы 1:
2. С помощью правила «трех сигм» проверяем наличие или отсутствие промахов.
Таким образом, ни один из результатов не выходит за границы интервала , следовательно, с вероятностью 0,9973 гипотеза об отсутствии грубых погрешностей принимается.
3. Построение гистограммы и выдвижение гипотезы о виде закона распределения вероятности.
Для того чтобы построить гистограмму, необходимо результаты отдельных измерений расположить в так называемый вариационный ряд по возрастанию их численных значений.
Участок оси абсцисс, на котором располагается вариационный ряд значений физической величины, разбивается на k одинаковых интервалов . При выборе числа интервалов следует придерживаться следующих рекомендаций:
Число измерений «n» |
Число интервалов «k» |
|
40-100 |
7-9 |
|
100-500 |
8-12 |
|
500-1000 |
10-16 |
|
1000-10000 |
12-22 |
Тогда:
Начало первого интервала выбирается таким образом, чтобы это значение оказалось меньше, чем минимальный результат вариационного ряда. Последний интервал должен покрывать максимальное значение ряда. Выберем начало первого интервала в точке 29,87, тогда конец последнего (9-го) интервала окажется в точке 30,5.
Затем для каждого интервала подсчитывается количество результатов mi, попавших в данный интервал и определяется
Если в интервал попадает меньше пяти наблюдений, то такие интервалы объединяют с соседними, соответственно изменяется и параметр .
начало окончание кол-во совпадений mi
- первый интервал составляет 29,87 до 29,94 6
- второй интервал составляет 29,94 до 30,01 9
- третий интервал составляет 30,01 до 30,08 8
- четвертый интервал составляет 30,08 до 30,15 22
- пятый интервал составляет 30,15 до 30,22 17
- шестой интервал составляет 30,22 до 30,29 12
- седьмой интервал составляет 30,29 до 30,36 13
- восьмой интервал составляет 30,36 до 30,43 6
примем m=8
- девятый интервал составляет 30,43 до 30,50 2
Так, в нашем примере объединяются два последних интервала, их ширина становится равной 0,14. Общее число интервалов становится равным 8.
Результаты производимых вычислений заносятся в первую половину таблицы 2, а затем строится сама гистограмма (рис.1).
Определяем для каждого из интервалов.
;;;;;;;
Построим гистограмму
Рис.1
Из вида гистограммы на рис. 1 можно сделать предположение о том, что вероятность результата измерения подчиняется нормальному закону. Проверим правдивость этой гипотезы.
4. Проверка нормальности закона распределения по критерию Пирсона.
Для расчета критерия Пирсона необходимо знать эмпирические частоты и теоретические вероятности для каждого интервала . Для расчета вероятностей используется функция Лапласа:
Значения X1 и X2 соответствуют началу и концу интервала. Для каждого из этих значений рассчитываем относительный доверительный интервал t, а затем из таблиц функции Лапласа находим соответствующие значения этой функции и .
Рассчитаем значение относительного доверительного интервала t для каждого из интервалов.
;
; ;Из таблицы найдем
; ; ; ;
; ; ; ;
; ; ; ;
; ; ; ;
; ; ; ;
; ; ; ;
; ; ;
;
Определим значение P для каждого интервала:
; ; ; ; ; ; ;
Рассчитаем значение - критерия для каждого интервала и суммарное значение :
; ; ; ; ; ; ;
Определим табличное (критическое) значение , задавшись доверительной вероятностью 0,98 и вычислив по формуле число степеней свободы:
; ; ;
Таким образом, с вероятностью 0,98 гипотеза о нормальности распределения вероятности результата измерения принимается.
5. В тех же координатах, что и гистограмма, следует построить теоретическую кривую плотности вероятности. Для этого рассчитываем значения плотности вероятности для середины каждого интервала и отложим как ординаты из середин соответствующих интервалов; полученные точки соединим плавной кривой, симметричной относительно математического ожидания (среднего арифметического значения) (рис 1).
; ; ; ; ; ; ;
Результаты вычислений
Таблица 2
i |
Интервалы |
mi |
|||||||||
1 |
29,87 |
29,94 |
6 |
0,857 |
-1,999 |
-1,524 |
-0,4767 |
-0,4357 |
0,041 |
0,88 |
|
2 |
29,94 |
30,01 |
9 |
1,286 |
-1,524 |
-1,049 |
-0,4357 |
-0,3531 |
0,0826 |
0,066 |
|
3 |
30,01 |
30,08 |
8 |
1,143 |
-1,049 |
-0,574 |
-0,3531 |
-0,2157 |
0,1374 |
2,398 |
|
4 |
30,08 |
30,15 |
22 |
3,143 |
-0,574 |
-0,098 |
-0,2157 |
-0,0398 |
0,1759 |
1,106 |
|
5 |
30,15 |
30,22 |
17 |
2,429 |
-0,098 |
-0,377 |
-0,0398 |
0,1480 |
0,1878 |
0,169 |
|
6 |
30,22 |
30,29 |
12 |
1,714 |
-0,377 |
0,852 |
0,1480 |
0,3023 |
0,1543 |
0,762 |
|
7 |
30,29 |
30,36 |
13 |
1,857 |
0,852 |
1,327 |
0,3023 |
0,4082 |
0,1059 |
0,548 |
|
8 |
30,36 |
30,43 |
6 |
0,571 |
1,327 |
2,277 |
0,4082 |
0,4887 |
0,0805 |
0,0003 |
|
9 |
30,43 |
30,50 |
2 |
6. Представление результата в виде доверительного интервала.
Определим стандартное отклонение среднего арифметического по формуле:
Закон распределения вероятности для среднего арифметического считаем нормальным, тогда доверительный интервал определяется по выражению при доверительной вероятности 0,98. Этому значению соответствует аргумент функции Лапласа t = 2,32.
;
;
Если закон распределения вероятности для среднего арифметического считаем неизвестным, то относительный доверительный интервал рассчитываем в соответствии с неравенством Чебышева:
; ;
;
;
Как видно из сравнения результатов, неизвестность закона распределения вероятности приводит к расширению доверительного интервала, то есть к увеличению дефицита измерительной информации.
Список используемой литературы.
1. Борискин, Соловьев, Белов, Якушенков. Методическое пособие «Расчет параметров посадки и калибров для проверки отверстия и вала».-т; 1994.
2. Маликов А.Б., Анихинова М.А. Методическое пособие «Расчет сборочных размерных цепей методом полной взаимозаменяемости».-т; 1994.
3. Борискин, Соловьев, Белов. Методическое пособие «Обработка результатов многократных измерений».
4. Конспект лекций по курсу «Метрология, стандартизация, сертификация».
5. ГОСТ 25347-82.
6. ГОСТ 24853-81.
7. ГОСТ 14807-69 - ГОСТ 14827-69.
8. ГОСТ Р 50285-92 - ГОСТ Р 50288-92, ГОСТ 18369-73.
9. ГОСТ 14748-69 - ГОСТ 14752-69.
Подобные документы
Расчет параметров посадки с зазором в системе отверстия. Предельные размеры, допуски отверстия и вала. Числовые значения предельных отклонений. Обозначение размеров на рабочих чертежах. Схема расположения полей допусков. Условное обозначение допусков.
курсовая работа [1,5 M], добавлен 30.06.2013Расшифровка посадки по буквенному написанию или другим параметрам. Обозначение системы, в которой обозначены отверстие и вал. Буквенное обозначение размеров вала и отверстия. Расчет предельного размера вала и отверстия S(N) max и min допуск посадки.
лабораторная работа [112,3 K], добавлен 06.10.2010Расчет и выбор посадок с зазором для гладкого цилиндрического соединения. Схемы расположения полей допусков. Наиболее приемлемые технологические процессы окончательной обработки вала. Универсальные средства для измерения размеров отверстия и вала.
курсовая работа [850,4 K], добавлен 19.03.2014Определение и расчет параметров посадки гладкого цилиндрического соединения. Выбор контролируемых параметров зубчатых колес. Определение размеров калибров для контроля отверстия и вала, контрольных калибров к ним. Расчет посадок для подшипников качения.
курсовая работа [30,5 K], добавлен 28.11.2013Построение схем расположения полей допусков для сопряжения в системах отверстия и вала. Расчет и выбор посадки с зазором подшипника скольжения по упрощенному варианту. Выбор посадки с натягом (прессовые посадки). Расчет и выбор посадок подшипника качения.
курсовая работа [2,7 M], добавлен 07.08.2013Расчет посадки с зазором (натягом) и переходной посадки для гладких цилиндрических сопряжений. Схемы расположения полей допусков. Предельные отклонения и размеры для отверстия. Определение предельных значений вероятностных зазоров, построение графика.
контрольная работа [1,4 M], добавлен 06.09.2015Отклонения и поля допусков отверстия и вала. Определение оптимального зазора с учётом шероховатости и температурных деформаций. Расчет калибров для деталей шестерня и втулки гладкого цилиндрического соединения. Расчёт посадки для подшипников скольжения.
курсовая работа [221,8 K], добавлен 19.12.2013Правила построения схем расположения полей допусков. Расчет предельных диаметров резьбовых деталей. Уравнение размерной цепи. Определение предельных отклонений отверстия и вала. Требования к показателям, характеризующим геометрическую точность элементов.
методичка [132,5 K], добавлен 04.10.2011Описание работы узла - опора вала. Расчет и выбор посадки с зазором, переходной посадки, посадки с натягом, калибров и контркалибров. Определение посадок подшипников качения. Расчет шлицевого и резьбового соединения. Параметры точности зубчатого колеса.
курсовая работа [182,7 K], добавлен 04.10.2011Предельные размеры, допуски, натяги или зазоры. Построение схем полей допусков. Виды и система посадок. Определение допусков и посадок для гладких элементов деталей по ОСТ, по ЕСДП СЭВ. Посадка с натягом в системе отверстия. Допуск переходной посадки.
контрольная работа [54,6 K], добавлен 26.02.2014