Атомно-абсорбционный анализ
Метод атомно-абсорбционного спектрального анализа и его достоинства. Контроль технологических процессов. Термическое испарение сухих остатков растворов. Наложение излучения атомизатора на излучение источника света. Коэффициент диффузии атомов в газах.
Рубрика | Производство и технологии |
Вид | доклад |
Язык | русский |
Дата добавления | 10.11.2008 |
Размер файла | 69,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
7
Содержание:
Введение
1. Атомно-абсорбционный анализ
2. Достоинства атомно-абсорбционного анализа
Список литературы
Введение
Метод атомно-абсорбционного спектрального анализа отличается высокой абсолютной и относительной чувствительностью. Метод позволяет с большой точностью определять в растворах около восьмидесяти элементов в малых концентрациях, поэтому он широко применяется в биологии, медицине (для анализа органических жидкостей), в геологии, почвоведении (для определения микроэлементов в почвах) и других областях науки, а также в металлургии для исследований и контроля технологических процессов.
По точности и чувствительности этот метод превосходит многие другие; поэтому его применяют при аттестации эталонных сплавов и геологических пород (путем перевода в раствор).
Атомно-абсорбционный анализ
Атомно-абсорбционный анализ (атомно-абсорбц. спектрометрия), метод количественного элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора, пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетические состояния. Этим переходам в атомных спектрах соответствуют резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера, мерой концентрации элемента служит оптическая плотность A = lg(I0/I), где I0 и I-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой.
Принципиальная схема пламенного атомно-абсорбционного спектрометра: 1-источник излучения; 2-пламя; 3-монохрома гор; 4-фотоумножитель; 5-регистрирующий или показывающий прибор.
Приборы для атомно-абсорбционного анализа - атомно-абсорбционные спектрометры - прецизионные высокоавтоматизированные устройства, обеспечивающие воспроизводимость условий измерений, автоматическое введение проб и регистрацию результатов измерения. В некоторые модели встроены микроЭВМ. В качестве примера на рис. приведена схема одного из спектрометров. Источником линейчатого излучения в спектрометрах чаще всего служат одноэлементные лампы с полым катодом, заполняемые неоном. Для определения некоторых легколетучих элементов (Cd, Zn, Se, Те и др.) удобнее пользоваться высокочастотными безэлектродными лампами.
Перевод анализируемого объекта в атомизированное состояние и формирование поглощающего слоя пара определенной и воспроизводимой формы осуществляется в атомизаторе - обычно в пламени или трубчатой печи. Наиболее часто используют пламя смесей ацетилена с воздухом (макс. т-ра 2000°С) и ацетилена с N2O (2700°С). Горелку со щелевидным соплом длиной 50-100 мм и шириной 0,5-0,8 мм устанавливают вдоль оптич. оси прибора для увеличения длины поглощающего слоя.
Трубчатые печи сопротивления изготавливают чаще всего из плотных сортов графита. Для исключения диффузии паров через стенки и увеличения долговечности графитовые трубки покрывают слоем газонепроницаемого пироуглерода. Максимальная температура нагрева достигает 3000 °С. Менее распространены тонкостенные трубчатые печи из тугоплавких металлов (W, Та, Мо), кварца с нихромовым нагревателем. Для защиты графитовых и металлических печей от обгорания на воздухе их помещают в полугерметичные или герметичные камеры, через которые продувают инертный газ (Аr, N2).
Введение проб в поглощающую зону пламени или печи осуществляют разными приемами. Растворы распыляют (обычно в пламя) с помощью пневматических распылителей, реже - ультразвуковых. Первые проще и стабильнее в работе, хотя уступают последним в степени дисперсности образующегося аэрозоля. Лишь 5-15% наиболее мелких капель аэрозоля поступает в пламя, а остальная часть отсеивается в смесительной камере и выводится в сток. Максимальная концентрация твердого вещества в растворе обычно не превышает 1%. В противном случае происходит интенсивное отложение солей в сопле горелки.
Термическое испарение сухих остатков растворов - основной способ введения проб в трубчатые печи. При этом чаще всего пробы испаряют с внутренней поверхности печи; р-р пробы (объемом 5-50 мкл) вводят с помощью микропипетки через дозировочное отверстие в стенке трубки и высушивают при 100°С. Однако пробы испаряются со стенок при непрерывном возрастании температуры поглощающего слоя, что обусловливает нестабильность результатов. Чтобы обеспечить постоянство температуры печи в момент испарения, пробу вводят в предварительно нагретую печь, используя угольный электрод (графитовую кювету) графитовый тигель (печь Вудриффа), металлический или графитовый зонд. Пробу можно испарять с платформы (графитового корытца), которую устанавливают в центре печи под дозировочным отверстием. В результате значительного отставания температуры платформы от температуры печи, нагреваемой со скоростью ок. 2000 К/с, испарение происходит при достижении печью практически постоянной температуры.
Для введения в пламя твердых веществ или сухих остатков растворов используют стержни, нити, лодочки, тигли из графита или тугоплавких металлов, помещаемые ниже оптич. оси прибора, так что пары пробы поступают в поглощающую зону с потоком газов пламени. Графитовые испарители в ряде случаев дополнительно подогревают электрическим током. Для исключения мех. потерь порошкообразных проб в процессе нагрева применяются испарители типа цилиндрических капсул, изготовленные из пористых сортов графита.
Иногда растворы проб подвергают в реакционном сосуде обработке в присут. восстановителей, чаще всего NaBH4. При этом Hg, напр., отгоняется в элементном виде, As, Sb, Bi и др.-в виде гидридов, к-рые вносятся в атомизатор потоком инертного газа. Для монохроматизации излучения используют призмы или дифракционные решетки; при этом достигают разрешения от 0,04 до 0,4 нм.
При атомно-абсорбционном анализе необходимо исключить наложение излучения атомизатора на излучение источника света, учесть возможное изменение яркости последнего, спектральные помехи в атомизаторе, вызванные частичным рассеянием и поглощением света твердыми частицами и молекулами посторонних компонентов пробы. Для этого пользуются различными приемами, например модулируют излучение источника с частотой, на которую настраивают приемно - регистрирующее устройство, применяют двухлучевую схему или оптич. схему с двумя источниками света (с дискретным и непрерывным спектрами). наиб. эффективна схема, основанная на зеемановском расщеплении и поляризации спектральных линий в атомизаторе. В этом случае через поглощающий слой пропускают свет, поляризованный перпендикулярно магнитному полю, что позволяет учесть неселективные спектральные помехи, достигающие значений А = 2, при измерении сигналов, которые в сотни раз слабее.
1. Достоинства атомно-абсорбционного анализа
Достоинства атомно-абсорбционного анализа - простота, высокая селективность и малое влияние состава пробы на результаты анализа. Ограничения метода - невозможность одновременного определения нескольких элементов при использовании линейчатых источников излучения и, как правило, необходимость переведения проб в р-р.
Атомно-абсорбционный анализ применяют для определения около 70 элементов (гл. обр. металлов). Не определяют газы и некоторые др. неметаллы, резонансные линии которых лежат в вакуумной области спектра (длина волны меньше 190 нм). С применением графитовой печи невозможно определять Hf, Nb, Та, W и Zr, образующие с углеродом труднолетучие карбиды. Пределы обнаружения большинства элементов в р-рах при атомизации в пламени 1-100мкг/л, в графитовой печи в 100-1000 раз ниже. Абсолютные пределы обнаружения в последнем случае составляют 0,1-100 пг. Относительно стандартное отклонение в оптимальных условиях измерений достигает 0,2-0,5% для пламени и 0,5-1,0% для печи. В автоматическом режиме работы пламенный спектрометр позволяет анализировать до 500 проб в час, а спектрометр с графитовой печью-до 30 проб. Оба варианта часто используют в сочетании с предварит. разделением и концентрированием экстракцией, дистилляцией, ионным обменом, хроматографией, что в ряде случаев позволяет косвенно определять некоторые неметаллы и орг. соединения.
Методы атомно-абсорбционного анализа применяют также для измерения некоторых физических и физ.-химических величин - коэффициент диффузии атомов в газах, температур газовой среды, теплот испарения элементов и др.; для изучения спектров молекул, исследования процессов, связанных с испарением и диссоциацией соединений.
Список литературы
1. Львов Б. В., Атомно-абсорбционный спектральный анализ, М, 1966;
2. Прайс В., Аналитическая атомно-абсорбционная спектроскопия, пер. с англ., М., 1976;
3. Харламов И.П., Еремина Г. В., Атомно-абсорбционный анализ в черной металлургии, М., 1982;
4. Николаев Г. И., Немец А. М., Атомно-абсорбционная спектроскопия в исследовании испарения металлов, М., 1982;
5. Хавезов И., Цалев Д., Атомно-абсорбционный анализ, пер. с болг., Л., 1983. Б. В. Львов. Л. К. Ползик.
Подобные документы
Описание метода атомно-силовой микроскопии, его достоинства и недостатки. Схематическое устройство атомно-силового микроскопа. Особенности осуществления процесса сканирования. Применение атомно-силовой микроскопии для определения морфологии тонких пленок.
реферат [883,8 K], добавлен 09.12.2015История развития и организационная структура Федерального бюджетного учреждения Магнитогорского ЦСМ. Принципы оказания услуг в области технического регулирования и обеспечения единства измерений. Алгоритм применения атомно-абсорбционных спектрометров.
отчет по практике [2,4 M], добавлен 29.03.2015Молекулярно-лучевое эпитаксиальное (МЛЭ) наращивание на подложке монокристаллических слоев полупроводниковых веществ. Атомно-силовой микроскоп: сфера применения, пошаговое объяснение и теоретическое обоснование порядка его настройки и подготовки образцов.
курсовая работа [2,9 M], добавлен 08.12.2013Технические характеристики и принцип работы холодильников абсорбционного типа, их преимущества и недостатки по сравнению с компрессионными. Основные узлы агрегата и порядок их взаимодействия, заполнение водоаммиачным раствором и проверка на обмерзание.
реферат [443,9 K], добавлен 08.06.2009Пример определения теплоемкости при заданной температуре. Тепловой поток излучения. Коэффициент теплоотдачи излучения. Число Прандтля и число Грасгофа. Критерий Нуссельта. Коэффициент теплоотдачи конвекцией. Критерий Фурье. Безразмерная температура.
лабораторная работа [202,3 K], добавлен 11.06.2013Общие понятия о технологических размерных цепях, их виды. Условия осуществления размерного анализа технологических процессов. Основные методы и этапы расчета технологических размерных цепей. Назначение допусков на размеры исходной заготовки детали.
презентация [774,8 K], добавлен 26.10.2013Особенности и сущность метода динамического молекулярного моделирования. Параметры потенциала, относительный коэффициент диффузии. Специфика распределения атомов в структуре системы. Координационное число для Li-Oet. Сфера использования этого метода.
презентация [250,4 K], добавлен 24.10.2013Неровности поверхности, высотные параметры. Магнитный и визуально-измерительный метод контроля параметров профиля шероховатости. Теория светорассеяния, интегрирующая сфера и метод Тейлора. Применение мезооптических систем к анализу рассеянного излучения.
дипломная работа [481,0 K], добавлен 14.04.2013Методы получения пленок. Вакуумные. Вакуумно-термическое испа-рение. Его разновидности: лазерное, электронно-лучевое, "взрывное". Осо-бенности испарения сплавов и композиционных смесей. Типы и конструкции испарителей. Плазменные методы получения пленок.
реферат [568,5 K], добавлен 03.01.2009Структура технологических систем; их свойства, признаки функционирования, производственные ресурсы. Факторы, определяющие производственную мощность. Естественные процессы как основа технологических систем. Технический контроль качества продукции.
контрольная работа [89,6 K], добавлен 18.02.2014