Решение нелинейных уравнений

Сущность и графическое представление методов решения нелинейных уравнений вида F(x)=0. Особенности метода хорд, бисекции, простой итерации, касательных и секущих. Проверка результатов с помощью встроенных функций и оценка точности полученных значений.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 09.11.2010
Размер файла 316,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задание №1

Отделить корни уравнения

графически и уточнить один из них:

· методом половинного деления;

· методом хорд;

· методом касательных;

· методом секущих;

· методом простой итерации;

с точностью е=0,001.

Создать функции, реализующие указанные методы, построить графическую иллюстрацию методов, результаты проверить с помощью встроенных функций, оценить точность полученных значений.

1. Метод бисекции (деления отрезка пополам)

Метод бисекции или метод деления отрезка пополам -- простейший численный метод для решения нелинейных уравнений вида F(x)=0. Предполагается только непрерывность функции F(x).

Графическое представление метода бисекций

Решим задание в пакете Маткад:

2. Метод хорд (метод линейной интерполяции)

Идея метода состоит в том, что по двум точкам и построить прямую (то есть хорду, соединяющую две точки графика) и взять в качестве следующего приближения абсциссу точки пересечения этой прямой с осью Ox.

Графическое представление метода хорд

Решим задание в пакете Маткад:

3. Метод касательных (Ньютона)

Графическое представление метода касательных

Решим задание в пакете Маткад:

4. Метод секущих

Графическое представление метода секущих

Решим задание в пакете Маткад:

5. Метод простой итерации

Введем функцию:

Графическое представление метода простой итерации

Решим задание в пакете Маткад:

Задание №2

Решить задачу Коши для дифференциального уравнения на отрезке [a,b] при начальном заданном условии и шаге интегрирования h:

1. методом Эйлера;

2. методом Рунге - Кутта 4 - го порядка точности.

3. проверить решение с помощью встроенных функций пакета MathCAD.

В решении оставлять 5 цифр после запятой.

№ вари-анта

Функция

Интервал

y0

Шаг

23

[0;0,5]

y(0)=0,3

0,05

1. Метод Эйлера

Решим задание в пакете Маткад:

2. Метод Рунге - Кутта 4 - го порядка точности

Проверим решение с помощью встроенных функций пакета MathCAD


Подобные документы

  • Методы решения нелинейных уравнений: касательных и хорд, результаты их вычислений. Алгоритм и блок схема метода секущих. Исследование характерных примеров для практического сравнения эффективности рассмотренных методов разрешения нелинейных уравнений.

    дипломная работа [793,2 K], добавлен 09.04.2015

  • Графическое решение нелинейного уравнения. Уточнение значение одного из действительных решений уравнения методами половинного деления, Ньютона–Рафсона, секущих, простой итерации, хорд и касательных, конечно-разностным и комбинированным методом Ньютона.

    лабораторная работа [32,7 K], добавлен 11.06.2011

  • Изучение методов уточнения корней нелинейных уравнений (половинного деления, хорд, касательных, простой итерации). Метод хорд и касательных дает высокую скорость сходимости при решении уравнений, и небольшую - метод половинного деления и простой итерации.

    контрольная работа [58,6 K], добавлен 20.11.2010

  • Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.

    курсовая работа [3,1 M], добавлен 26.02.2011

  • Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.

    курсовая работа [371,6 K], добавлен 14.01.2015

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа [181,1 K], добавлен 13.04.2010

  • Смысл метода Ньютона для решения нелинейных уравнений. Доказательства его модификаций: секущих, хорд, ложного положения, Стеффенсена, уточненного для случая кратного корня, для системы двух уравнений. Оценка качества метода по числу необходимых итераций.

    реферат [99,0 K], добавлен 07.04.2015

  • Общая постановка задачи. Отделение корня. Уточнение корня. Метод половинного деления (бисекции). Метод хорд (секущих). Метод касательных (Ньютона). Комбинированный метод хорд и касательных. Задания для расчётных работ.

    творческая работа [157,4 K], добавлен 18.07.2007

  • Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.

    учебное пособие [581,1 K], добавлен 08.02.2010

  • Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.

    курсовая работа [508,1 K], добавлен 16.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.