Решение нелинейных уравнений
Сущность и графическое представление методов решения нелинейных уравнений вида F(x)=0. Особенности метода хорд, бисекции, простой итерации, касательных и секущих. Проверка результатов с помощью встроенных функций и оценка точности полученных значений.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 09.11.2010 |
Размер файла | 316,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Задание №1
Отделить корни уравнения
графически и уточнить один из них:
· методом половинного деления;
· методом хорд;
· методом касательных;
· методом секущих;
· методом простой итерации;
с точностью е=0,001.
Создать функции, реализующие указанные методы, построить графическую иллюстрацию методов, результаты проверить с помощью встроенных функций, оценить точность полученных значений.
1. Метод бисекции (деления отрезка пополам)
Метод бисекции или метод деления отрезка пополам -- простейший численный метод для решения нелинейных уравнений вида F(x)=0. Предполагается только непрерывность функции F(x).
Графическое представление метода бисекций
Решим задание в пакете Маткад:
2. Метод хорд (метод линейной интерполяции)
Идея метода состоит в том, что по двум точкам и построить прямую (то есть хорду, соединяющую две точки графика) и взять в качестве следующего приближения абсциссу точки пересечения этой прямой с осью Ox.
Графическое представление метода хорд
Решим задание в пакете Маткад:
3. Метод касательных (Ньютона)
Графическое представление метода касательных
Решим задание в пакете Маткад:
4. Метод секущих
Графическое представление метода секущих
Решим задание в пакете Маткад:
5. Метод простой итерации
Введем функцию:
Графическое представление метода простой итерации
Решим задание в пакете Маткад:
Задание №2
Решить задачу Коши для дифференциального уравнения на отрезке [a,b] при начальном заданном условии и шаге интегрирования h:
1. методом Эйлера;
2. методом Рунге - Кутта 4 - го порядка точности.
3. проверить решение с помощью встроенных функций пакета MathCAD.
В решении оставлять 5 цифр после запятой.
№ вари-анта |
Функция |
Интервал |
y0 |
Шаг |
|
23 |
[0;0,5] |
y(0)=0,3 |
0,05 |
1. Метод Эйлера
Решим задание в пакете Маткад:
2. Метод Рунге - Кутта 4 - го порядка точности
Проверим решение с помощью встроенных функций пакета MathCAD
Подобные документы
Методы решения нелинейных уравнений: касательных и хорд, результаты их вычислений. Алгоритм и блок схема метода секущих. Исследование характерных примеров для практического сравнения эффективности рассмотренных методов разрешения нелинейных уравнений.
дипломная работа [793,2 K], добавлен 09.04.2015Графическое решение нелинейного уравнения. Уточнение значение одного из действительных решений уравнения методами половинного деления, Ньютона–Рафсона, секущих, простой итерации, хорд и касательных, конечно-разностным и комбинированным методом Ньютона.
лабораторная работа [32,7 K], добавлен 11.06.2011Изучение методов уточнения корней нелинейных уравнений (половинного деления, хорд, касательных, простой итерации). Метод хорд и касательных дает высокую скорость сходимости при решении уравнений, и небольшую - метод половинного деления и простой итерации.
контрольная работа [58,6 K], добавлен 20.11.2010Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.
курсовая работа [3,1 M], добавлен 26.02.2011Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.
курсовая работа [371,6 K], добавлен 14.01.2015Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.
курсовая работа [181,1 K], добавлен 13.04.2010Смысл метода Ньютона для решения нелинейных уравнений. Доказательства его модификаций: секущих, хорд, ложного положения, Стеффенсена, уточненного для случая кратного корня, для системы двух уравнений. Оценка качества метода по числу необходимых итераций.
реферат [99,0 K], добавлен 07.04.2015Общая постановка задачи. Отделение корня. Уточнение корня. Метод половинного деления (бисекции). Метод хорд (секущих). Метод касательных (Ньютона). Комбинированный метод хорд и касательных. Задания для расчётных работ.
творческая работа [157,4 K], добавлен 18.07.2007Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.
учебное пособие [581,1 K], добавлен 08.02.2010Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа [508,1 K], добавлен 16.12.2015