Краткие сведения и задачи по курсу векторной и линейной алгебры

Определение типа кривой по виду уравнения, уравнение с угловым коэффициентом, в отрезках и общее уравнение. Определение медианы, уравнения средней линии в треугольнике. Вопросы по линейной алгебре. Решение системы уравнения при помощи обратной матрицы.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 31.10.2010
Размер файла 97,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Контрольная работа

Краткие сведения и задачи по курсу векторной и линейной алгебры

Векторная алгебра

Вариант №21

1. Найти скалярное произведение .

2. При каком значении б векторы и ортогональны?

;;;

;;;

Два вектора ортогональны, когда их скалярное произведение равно нулю.

3. Для прямой М1М2 написать уравнение с угловым коэффициентом, в отрезках и общее уравнение. Начертить график прямой. М1(0,-3) М2(2,1).

Общий вид уравнения прямой с угловым коэффициентом записывается в виде:

y-y1=k(x-x1),

значит для прямой М1М2

у+3=kx

Общий вид уравнения прямой, проходящей через две точки записывается в виде:

,

значит для прямой М1М2

Общий вид уравнения прямой в отрезках записывается в виде:

,

Здесь

Уравнения прямой в отрезках для прямой М1М2

;

4. В треугольнике М0М1М2 найти уравнение медианы, высоты, проведенных их вершины М0, а также уравнение средней линии EF, параллельной основанию М1М2.(М0(-1,-2); М1(0,-3); М2(2,1)).

Найдём координаты точки М3, координаты середины стороны М1М2:

уравнения прямой, проходящей через две точки записывается в виде:

,

уравнение для высоты М0М3:

Найдём уравнение прямой М1М2:

Из условия перпендикулярности (k2=-1/k1) следует, что k2=1/2.

Уравнения прямой с угловым коэффициентом записывается в виде:

y-y1=k(x-x1),

тогда уравнение для высоты примет вид:

y+1= (x+2)/2

или

x+2y=0.

Расстояние от точки М(x0,y0) до прямой Ax+By+c=0 находится по формуле:

Чтобы найти длину высоту, найдём расстояние от точки М0(-3,-5) до прямойМ1М2, уравнение которой имеет вид -x+2y-4=0. Подставим данные в формулу(1):

Найдём координаты точек Е иF.

Для точки Е: x=-1/2; y=-5/2; E(-1/2;-5/2).

Для точки F: x=1/2; y=-1/2; F(1/2;-1/2).

Уравнение прямой EF:

y+5/2=-2x-1 или 2x+y+3,5=0.

5. По каноническому уравнению кривой второго порядка определить тип кривой, начертить её график. Найти координаты фокусов, вершин и центра (для центральной кривой).

(1)

Воспользуемся параллельным переносом (O'(-3,-1))

(2)

Подставим (2) в (1), получим

кривая второго порядка является эллипсом.

F1(c;0); F2(-c;0).

т.к.

Координаты центра: O'(-3,-1).

6. Преобразовать к полярным координатам уравнения линии.

1)

2)

Первое уравнение представляет собой (при любых значениях ц) полюс О. Второе - дает все точки линии, в том числе полюс. Поэтому первое уравнение можно отбросить. Следовательно, получаем:

Линейная алгебра

Матрицы

Ответы на вопросы

1. Дайте определение обратной матрицы. Какие вы знаете способы вычисления обратной матрицы?

Матрица В называется обратной для матрицы А, если выполняется условие АВ=ВА=Е, где Е - единичная матрица. Способы вычисления обратной матрицы: 1) использование алгебраических дополнений; 2) привести исходную матрицу к ступенчатому виду методом Гаусса, после чего необходимо преобразовать её в единичную .

2. Как записывается система уравнений в матрично-векторной форме? Как найти решение системы уравнений при помощи обратной матрицы?

Система уравнений в матрично-векторной форме записывается в виде: .

Решение системы уравнения при помощи обратной матрицы:

3. Сформулируйте, в чем состоит процедура Гаусса и для решения каких линейных задач применяется?

Процедура Гаусса используется для решения систем линейных уравнений и состоит в следующем:

Выполняются элементарные преобразования, вследствие чего можно получить два исхода:

1. получается строчка, в которой до черты стоят нули, а после - ненулевое число, тогда решения нет;

2. система приводится к лестничному виду.

Если в системе лестничного вида число уравнений совпадает с числом неизвестных, то решение единственное.

Если число уравнений меньше чем число неизвестных, то решений бесконечное множество. В этом случае неизвестные разделяются на зависимые и свободные. Число зависимых неизвестных совпадает с числом уравнений.

Задача 1.

X4-свободная переменная

r = 3

система совместима.

Задача 2

т.к. detA0, то матрица является невырожденной.

А11=3;А12= -1;А13= -10;А21=0;А22=0;А23= -1;А31=0;А32= -1;А33= -1.

;

.

.

.

5. Найти скалярное произведение .

6. При каком значении б векторы и ортогональны?

;;;

;;;

Два вектора ортогональны, когда их скалярное произведение равно нулю.

7. Для прямой М1М2 написать уравнение с угловым коэффициентом, в отрезках и общее уравнение. Начертить график прямой. М1(2,-2) М2(1,0).

Общий вид уравнения прямой с угловым коэффициентом записывается в виде:

y-y1=k(x-x1),

значит для прямой М1М2

у+2=k(x-2)

Общий вид уравнения прямой, проходящей через две точки записывается в виде:

,

значит для прямой М1М2

Общий вид уравнения прямой в отрезках записывается в виде:

,

здесь

Уравнения прямой в отрезках для прямой М1М2

;

y=-2x+2

8. В треугольнике М0М1М2 найти уравнение медианы, высоты, проведенных их вершины М0, а также уравнение средней линии EF, параллельной основанию М1М2.(М0(-3,-5); М1(2,-2); М2(1,0)).

Найдём координаты точки М3, координаты середины стороны М1М2:

уравнения прямой, проходящей через две точки записывается в виде:

,

уравнение для высоты М0М3:

Найдём уравнение прямой М1М2:

Из условия перпендикулярности (k2=-1/k1) следует, что k2=-1/2.

Уравнения прямой с угловым коэффициентом записывается в виде:

y-y1=k(x-x1),

тогда уравнение для высоты примет вид:

y+5= -(x+3)/2

или

x+2y+13=0.

Расстояние от точки М(x0,y0) до прямой Ax+By+c=0 находится по формуле:

Чтобы найти длину высоту, найдём расстояние от точки М0(-3,-5) до прямойМ1М2, уравнение которой имеет вид 2x+y-2=0. Подставим данные в формулу(1):

Найдём координаты точек Е иF.

Для точки Е: x=-1/2; y=-7/2; E(-1/2;-7/2).

Для точки F: x=-1; y=-5/2; F(-1;-5/2).

Уравнение прямой EF:

y+7/2=-2x-1 или 2x+y+4,5=0.

9. По каноническому уравнению кривой второго порядка определить тип кривой, начертить её график. Найти координаты фокусов, вершин и центра (для центральной кривой).

(1)

Воспользуемся параллельным переносом (O'(-2,2))

(2)

Подставим (2) в (1), получим

кривая второго порядка является эллипсом.

F1(c;0); F2(-c;0).

т.к.

Координаты центра: O'(-2,2).

10. Преобразовать к полярным координатам уравнения линии.

1)

2)

Первое уравнение представляет собой (при любых значениях ц) полюс О. Второе - дает все точки линии, в том числе полюс,. Поэтому первое уравнение можно отбросить. Следовательно получаем:

Ответы на вопросы

4. Дайте определение обратной матрицы. Какие вы знаете способы вычисления обратной матрицы?

Матрица В называется обратной для матрицы А, если выполняется условие АВ=ВА=Е, где Е - единичная матрица. Способы вычисления обратной матрицы: 1) использование алгебраических дополнений; 2) привести исходную матрицу к ступенчатому виду методом Гаусса, после чего необходимо преобразовать её в единичную .

5. Как записывается система уравнений в матрично-векторной форме? Как найти решение системы уравнений при помощи обратной матрицы?

Система уравнений в матрично-векторной форме записывается в виде:

.

Решения системы уравнения при помощи обратной матрицы:

6. Сформулируйте, в чем состоит процедура Гаусса и для решения каких линейных задач применяется?

Процедура Гаусса используется для решения систем линейных уравнений и состоит в следующем:

Выполняются элементарные преобразования, вследствие чего можно получить два исхода:

3. получается строчка, в которой до черты стоят нули, а после - ненулевое число, тогда решения нет;

4. система приводится к лестничному виду.

Если в системе лестничного вида число уравнений совпадает с числом неизвестных, то решение единственное.

Если число уравнений меньше чем число неизвестных, то решений бесконечное множество. В этом случае неизвестные разделяются на зависимые и свободные. Число зависимых неизвестных совпадает с числом уравнений.

Задача 1.

r=2; система совместима.

х 3,x 4 - свободные переменные

;.

Задача 2.

т.к. detA0, то матрица невырождена.

А11=-1; А12=-3; А13=-1;А21=-3;А22=1;А23=2;А31=2;А32=-1;А33= -3.

.


Подобные документы

  • Определение уравнения линии, уравнения и длины высоты, площади треугольника. Расчёт длины ребра, уравнения плоскости и объема пирамиды. Уравнение линии в прямоугольной декартовой системе координат. Тригонометрическая форма записи комплексных чисел.

    контрольная работа [489,4 K], добавлен 25.03.2014

  • Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.

    контрольная работа [126,9 K], добавлен 20.04.2016

  • Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.

    презентация [206,3 K], добавлен 17.09.2013

  • Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.

    контрольная работа [94,3 K], добавлен 02.11.2011

  • Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.

    контрольная работа [65,3 K], добавлен 15.12.2010

  • Нелинейные уравнения, определение корней. Первая теорема Бальцано-Коши. Метод бисекций (деления пополам) и его алгоритм. Использование линейной интерполяции граничных значений заданной функции в методе хорд. Тестовое уравнение, компьютерный эксперимент.

    реферат [104,3 K], добавлен 10.09.2009

  • Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.

    курсовая работа [347,1 K], добавлен 26.01.2015

  • Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.

    контрольная работа [126,8 K], добавлен 08.05.2009

  • Анализ уравнения гиперболического типа - волнового уравнения. Метод распространяющихся волн. Формула Даламбера, неоднородное уравнение. Задача Коши, двумерное волновое уравнение. Теорема устойчивости решения задачи Коши. Формулы волнового уравнения.

    реферат [1,0 M], добавлен 11.12.2014

  • Общий интеграл дифференциального уравнения, приводящегося к однородному. Решение задачи Коши методами интегрирующего множителя и способом Бернулли. Построение интегральной кривой методом изоклин. Составление матрицы системы и применение теоремы Крамера.

    курсовая работа [160,5 K], добавлен 23.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.