Краткие сведения и задачи по курсу векторной и линейной алгебры
Определение типа кривой по виду уравнения, уравнение с угловым коэффициентом, в отрезках и общее уравнение. Определение медианы, уравнения средней линии в треугольнике. Вопросы по линейной алгебре. Решение системы уравнения при помощи обратной матрицы.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 31.10.2010 |
Размер файла | 97,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Контрольная работа
Краткие сведения и задачи по курсу векторной и линейной алгебры
Векторная алгебра
Вариант №21
1. Найти скалярное произведение .
2. При каком значении б векторы и ортогональны?
;;;
;;;
Два вектора ортогональны, когда их скалярное произведение равно нулю.
3. Для прямой М1М2 написать уравнение с угловым коэффициентом, в отрезках и общее уравнение. Начертить график прямой. М1(0,-3) М2(2,1).
Общий вид уравнения прямой с угловым коэффициентом записывается в виде:
y-y1=k(x-x1),
значит для прямой М1М2
у+3=kx
Общий вид уравнения прямой, проходящей через две точки записывается в виде:
,
значит для прямой М1М2
Общий вид уравнения прямой в отрезках записывается в виде:
,
Здесь
Уравнения прямой в отрезках для прямой М1М2
;
4. В треугольнике М0М1М2 найти уравнение медианы, высоты, проведенных их вершины М0, а также уравнение средней линии EF, параллельной основанию М1М2.(М0(-1,-2); М1(0,-3); М2(2,1)).
Найдём координаты точки М3, координаты середины стороны М1М2:
уравнения прямой, проходящей через две точки записывается в виде:
,
уравнение для высоты М0М3:
Найдём уравнение прямой М1М2:
Из условия перпендикулярности (k2=-1/k1) следует, что k2=1/2.
Уравнения прямой с угловым коэффициентом записывается в виде:
y-y1=k(x-x1),
тогда уравнение для высоты примет вид:
y+1= (x+2)/2
или
x+2y=0.
Расстояние от точки М(x0,y0) до прямой Ax+By+c=0 находится по формуле:
Чтобы найти длину высоту, найдём расстояние от точки М0(-3,-5) до прямойМ1М2, уравнение которой имеет вид -x+2y-4=0. Подставим данные в формулу(1):
Найдём координаты точек Е иF.
Для точки Е: x=-1/2; y=-5/2; E(-1/2;-5/2).
Для точки F: x=1/2; y=-1/2; F(1/2;-1/2).
Уравнение прямой EF:
y+5/2=-2x-1 или 2x+y+3,5=0.
5. По каноническому уравнению кривой второго порядка определить тип кривой, начертить её график. Найти координаты фокусов, вершин и центра (для центральной кривой).
(1)
Воспользуемся параллельным переносом (O'(-3,-1))
(2)
Подставим (2) в (1), получим
кривая второго порядка является эллипсом.
F1(c;0); F2(-c;0).
т.к.
Координаты центра: O'(-3,-1).
6. Преобразовать к полярным координатам уравнения линии.
1)
2)
Первое уравнение представляет собой (при любых значениях ц) полюс О. Второе - дает все точки линии, в том числе полюс. Поэтому первое уравнение можно отбросить. Следовательно, получаем:
Линейная алгебра
Матрицы
Ответы на вопросы
1. Дайте определение обратной матрицы. Какие вы знаете способы вычисления обратной матрицы?
Матрица В называется обратной для матрицы А, если выполняется условие АВ=ВА=Е, где Е - единичная матрица. Способы вычисления обратной матрицы: 1) использование алгебраических дополнений; 2) привести исходную матрицу к ступенчатому виду методом Гаусса, после чего необходимо преобразовать её в единичную .
2. Как записывается система уравнений в матрично-векторной форме? Как найти решение системы уравнений при помощи обратной матрицы?
Система уравнений в матрично-векторной форме записывается в виде: .
Решение системы уравнения при помощи обратной матрицы:
3. Сформулируйте, в чем состоит процедура Гаусса и для решения каких линейных задач применяется?
Процедура Гаусса используется для решения систем линейных уравнений и состоит в следующем:
Выполняются элементарные преобразования, вследствие чего можно получить два исхода:
1. получается строчка, в которой до черты стоят нули, а после - ненулевое число, тогда решения нет;
2. система приводится к лестничному виду.
Если в системе лестничного вида число уравнений совпадает с числом неизвестных, то решение единственное.
Если число уравнений меньше чем число неизвестных, то решений бесконечное множество. В этом случае неизвестные разделяются на зависимые и свободные. Число зависимых неизвестных совпадает с числом уравнений.
Задача 1.
X4-свободная переменная
r = 3
система совместима.
Задача 2
т.к. detA0, то матрица является невырожденной.
А11=3;А12= -1;А13= -10;А21=0;А22=0;А23= -1;А31=0;А32= -1;А33= -1.
;
.
.
.
5. Найти скалярное произведение .
6. При каком значении б векторы и ортогональны?
;;;
;;;
Два вектора ортогональны, когда их скалярное произведение равно нулю.
7. Для прямой М1М2 написать уравнение с угловым коэффициентом, в отрезках и общее уравнение. Начертить график прямой. М1(2,-2) М2(1,0).
Общий вид уравнения прямой с угловым коэффициентом записывается в виде:
y-y1=k(x-x1),
значит для прямой М1М2
у+2=k(x-2)
Общий вид уравнения прямой, проходящей через две точки записывается в виде:
,
значит для прямой М1М2
Общий вид уравнения прямой в отрезках записывается в виде:
,
здесь
Уравнения прямой в отрезках для прямой М1М2
;
y=-2x+2
8. В треугольнике М0М1М2 найти уравнение медианы, высоты, проведенных их вершины М0, а также уравнение средней линии EF, параллельной основанию М1М2.(М0(-3,-5); М1(2,-2); М2(1,0)).
Найдём координаты точки М3, координаты середины стороны М1М2:
уравнения прямой, проходящей через две точки записывается в виде:
,
уравнение для высоты М0М3:
Найдём уравнение прямой М1М2:
Из условия перпендикулярности (k2=-1/k1) следует, что k2=-1/2.
Уравнения прямой с угловым коэффициентом записывается в виде:
y-y1=k(x-x1),
тогда уравнение для высоты примет вид:
y+5= -(x+3)/2
или
x+2y+13=0.
Расстояние от точки М(x0,y0) до прямой Ax+By+c=0 находится по формуле:
Чтобы найти длину высоту, найдём расстояние от точки М0(-3,-5) до прямойМ1М2, уравнение которой имеет вид 2x+y-2=0. Подставим данные в формулу(1):
Найдём координаты точек Е иF.
Для точки Е: x=-1/2; y=-7/2; E(-1/2;-7/2).
Для точки F: x=-1; y=-5/2; F(-1;-5/2).
Уравнение прямой EF:
y+7/2=-2x-1 или 2x+y+4,5=0.
9. По каноническому уравнению кривой второго порядка определить тип кривой, начертить её график. Найти координаты фокусов, вершин и центра (для центральной кривой).
(1)
Воспользуемся параллельным переносом (O'(-2,2))
(2)
Подставим (2) в (1), получим
кривая второго порядка является эллипсом.
F1(c;0); F2(-c;0).
т.к.
Координаты центра: O'(-2,2).
10. Преобразовать к полярным координатам уравнения линии.
1)
2)
Первое уравнение представляет собой (при любых значениях ц) полюс О. Второе - дает все точки линии, в том числе полюс,. Поэтому первое уравнение можно отбросить. Следовательно получаем:
Ответы на вопросы
4. Дайте определение обратной матрицы. Какие вы знаете способы вычисления обратной матрицы?
Матрица В называется обратной для матрицы А, если выполняется условие АВ=ВА=Е, где Е - единичная матрица. Способы вычисления обратной матрицы: 1) использование алгебраических дополнений; 2) привести исходную матрицу к ступенчатому виду методом Гаусса, после чего необходимо преобразовать её в единичную .
5. Как записывается система уравнений в матрично-векторной форме? Как найти решение системы уравнений при помощи обратной матрицы?
Система уравнений в матрично-векторной форме записывается в виде:
.
Решения системы уравнения при помощи обратной матрицы:
6. Сформулируйте, в чем состоит процедура Гаусса и для решения каких линейных задач применяется?
Процедура Гаусса используется для решения систем линейных уравнений и состоит в следующем:
Выполняются элементарные преобразования, вследствие чего можно получить два исхода:
3. получается строчка, в которой до черты стоят нули, а после - ненулевое число, тогда решения нет;
4. система приводится к лестничному виду.
Если в системе лестничного вида число уравнений совпадает с числом неизвестных, то решение единственное.
Если число уравнений меньше чем число неизвестных, то решений бесконечное множество. В этом случае неизвестные разделяются на зависимые и свободные. Число зависимых неизвестных совпадает с числом уравнений.
Задача 1.
r=2; система совместима.
х 3,x 4 - свободные переменные
;.
Задача 2.
т.к. detA0, то матрица невырождена.
А11=-1; А12=-3; А13=-1;А21=-3;А22=1;А23=2;А31=2;А32=-1;А33= -3.
.
Подобные документы
Определение уравнения линии, уравнения и длины высоты, площади треугольника. Расчёт длины ребра, уравнения плоскости и объема пирамиды. Уравнение линии в прямоугольной декартовой системе координат. Тригонометрическая форма записи комплексных чисел.
контрольная работа [489,4 K], добавлен 25.03.2014Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.
контрольная работа [126,9 K], добавлен 20.04.2016Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.
презентация [206,3 K], добавлен 17.09.2013Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа [94,3 K], добавлен 02.11.2011Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.
контрольная работа [65,3 K], добавлен 15.12.2010Нелинейные уравнения, определение корней. Первая теорема Бальцано-Коши. Метод бисекций (деления пополам) и его алгоритм. Использование линейной интерполяции граничных значений заданной функции в методе хорд. Тестовое уравнение, компьютерный эксперимент.
реферат [104,3 K], добавлен 10.09.2009Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.
контрольная работа [126,8 K], добавлен 08.05.2009Анализ уравнения гиперболического типа - волнового уравнения. Метод распространяющихся волн. Формула Даламбера, неоднородное уравнение. Задача Коши, двумерное волновое уравнение. Теорема устойчивости решения задачи Коши. Формулы волнового уравнения.
реферат [1,0 M], добавлен 11.12.2014Общий интеграл дифференциального уравнения, приводящегося к однородному. Решение задачи Коши методами интегрирующего множителя и способом Бернулли. Построение интегральной кривой методом изоклин. Составление матрицы системы и применение теоремы Крамера.
курсовая работа [160,5 K], добавлен 23.12.2010