Эрмитовы операторы
Рассмотрение понятия тождественного (единичного) оператора. Анализ методов решения линейных однородного и неоднородного уравнений. Ознакомление с определением эрмитовости оператора. Доказательство теоремы о свойствах ортогональности собственных функций.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 16.08.2010 |
Размер файла | 19,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Эрмитовы операторы
Содержание
- Линейные операторы
- Линейные уравнения
- Эрмитовы операторы
- Линейные операторы
- Пусть M и N -- линейные множества. Оператор L, преобразующий элементы множества M в элементы множества N, называется линейным, если для любых элементов f и g из M и комплексных чисел ? и ? справедливо равенство
- L(?+ ?g) = ?Lf + ?Lg (1)
- При этом множество M = ML называется областью определения оператора L. Если Lf = f при всех f Є M, то оператор L называется тождественным (единичным) оператором. Единичный оператор будем обозначать через I.
- Линейные уравнения
- Пусть L -- линейный оператор с областью определения ML . Уравнение
- Lu = F (2)
- называется линейным неоднородным уравнением. В уравнении (2) заданный элемент F называется свободным членом (или правой частью), а неизвестный элемент и из ML -- решением этого уравнения.
- Если в уравнении (2) свободный член F положить равным нулю, то полученное уравнение
- Lu = 0 (3)
- называется линейным однородным уравнением, соответствующим уравнению (2).
- В силу линейности оператора L совокупность решений однородного уравнения (3) образует линейное множество; в частности, и = 0 всегда является решением этого уравнения.
- Всякое решение и линейного неоднородного уравнения (2) (если оно существует) представляется в виде суммы частного решения ио этого уравнения и общего решения u, соответствующего линейного однородного уравнения (3)
- и = ио + u.
- Отсюда непосредственно выводим: для того чтобы решение уравнения (2) было единственным в ML, необходимо и достаточно, чтобы соответствующее однородное уравнение (3) имело только нулевое решение в ML . Пусть однородное уравнение (3) имеет только нулевое решение в ML. Обозначим через Rl область значений оператора L, т.е. (линейное) множество элементов вида {Lf}, где f пробегает ML. Тогда для любого F Є Rl уравнение (2) имеет единственное решение и Є ML , и, таким образом, возникает некоторый оператор, сопоставляющий каждому элементу F из Rl соответствующее решение уравнения (2). Этот оператор называется обратным оператором к оператору L и обозначается через L-1, так что
- и = L-1F. (4)
- Оператор L-1, очевидно, является линейным и отображает Rl на ML. Непосредственно из определения оператора L-1, а также из соотношений (2) и (4) вытекает:
- L L-1F = F, F Є Rl ; L-1Lu = u, и Є ML,
- т.е. L L-1=I, L-1L = I.
- Если линейный оператор L имеет обратный L-1, то системы функций {?k} и {L?k} одновременно линейно независимы. (При этом, естественно, предполагается, что все ?k принадлежат ML.)
- Рассмотрим линейное однородное уравнение
- Lu = ?u, (5)
- где ? -- комплексный параметр. Это уравнение имеет нулевое решение при всех ?. Может случиться, что при некоторых ? оно имеет ненулевые решения из ML. Те комплексные значения ?, при которых уравнение (5) имеет ненулевые решения из ML, называются собственными значениями оператора L, а соответствующие решения -- собственными элементами (функциями), соответствующими этому собственному значению. Полное число r, 1 ? r ? ?, линейно независимых собственных элементов, соответствующих данному собственному значению ?, называется кратностью этого собственного значения; если кратность r = 1, то ? называется простым собственным значением.
- Если кратность r собственного значения ? оператора L конечна и u1,...,и2 -- соответствующие линейно независимые собственные элементы, то любая их линейная комбинация
- u0 = c1u1 + c2u2 + ... + crur
- также является собственным элементом, соответствующим этому собственному значению, и приведенная формула дает общее решение уравнения (5). Отсюда вытекает: если решение уравнения
- Lu = ? u + f (6)
- существует, то его общее решение представляется формулой
- и = и* +?сkиk, (7)
- где и* -- частное решение (6) и сk, k = l,2,...,r, -- произвольные постоянные.
- Эрмитовы операторы
- Линейный оператор L, переводящий MLСL2(G) в L2(G), называется эрмитовым, если его область определения ML плотна в L2(G) и для любых f и g из Ml справедливо равенство
- (Lf,g) = (f,Lg ).
- Выражения (Lf, g) и (Lf, f) называются соответственно билинейной и квадратичной формами, порожденными оператором L.
- Для того чтобы линейный оператор L был эрмитовым, необходимо и достаточно, чтобы порожденная им квадратичная форма (Lf, f), f Є Ml, где Ml плотна в L2(G), принимала только вещественные значения.
- Линейный оператор L, переводящий Ml С L2(G) в L2(G), называется положительным, если Ml плотна в L2(G) и
- (Lf, f) ? 0, f Є Ml .
- В частности, всякий положительный оператор эрмитов.
- Теорема. Если оператор L эрмитов (положительный), то все его собственные значения вещественны (неотрицательны), а собственные функции, соответствующие различным собственным значениям, ортогональны.
- Доказательство. Пусть ?0 -- собственное значение, u0 -- соответствующая нормированная собственная функция эрмитова оператора L, L u0 = ?0u0. Умножая скалярно это равенство на u0, получим
- (Lu0, u0) = (?0 u0, u0) = ?0 (u0, u0) ?0|| u0||2 = ?0. (8)
- Но для эрмитова (положительного) оператора квадратичная форма (Lf, f) принимает только вещественные (неотрицательные) значения, и, стало быть, в силу (7) ?0 -- вещественное (неотрицательное) число.
- Докажем, что любые собственные функции и1 и и2, соответствующие различным собственным значениям ?1 и ?2, ортогональны. Действительно, из соотношений
- Lu1 = ?1 и1, Lu2 = ?2и2,
- из вещественности ?1 и ?2 и из эрмитовости оператора L получаем цепочку равенств
- ?1(и1,и2) = (? и1,и2) = (Lи1,и2) = (и1,Lu2) = (и1,?2и2) = =?2(и1,и2),
- т.е. ?1(и1,и2) = ?2(и1,и2). Отсюда, поскольку ?1 ? ?2, вытекает, что скалярное произведение (и1,и2) равно нулю. Теорема доказана.
- Предположим, что множество собственных значений эрмитова оператора L не более чем счетно, а каждое собственное значение конечной кратности. Перенумеруем все его собственные значения: ?1,?2,..., повтори ?k столько раз, какова его кратность. Соответствующие собственные функции обозначим через и1,и2,… так, чтобы каждому собственному значению соответствовала только одна собственная функция иk:
- Luk = ?k , иk, k = 1,2,...
- Собственные функции, соответствующие одному и тому же собственному значению, можно выбрать ортонормальными, используя процесс ортогонализации Шмидта. Всякая ортонормальная система {?k} состоит из линейно независимых функций. Всякая система ?1,?2,... линейно независимых функций из L2(G) преобразуется в ортонормальную систему ?1,?2, -- следующим процессом ортогонализации Шмидта:
- ?1 = ?1 /||?2 || , ?2 = ?2 - (?2, ?1) ?1 / || ?2 - (?2, ?1) ?1 ||
- ?k = ?k - (?k, ?k-1)?k-1 - … - (?k,?1)?1 / || ?k - (?k, ?k-1)?k-1 - … - - (?k,?1)?1||
- При этом опять получаются собственные функции, соответствующие тому же самому собственному значению. По доказанной теореме собственные функции, соответствующие различным собственным значениям, ортогональны.
- Таким образом, если система собственных функций {ик} эрмитова оператора L не более чем счетна, то ее можно выбрать ортонормальной:
- (Luk,ui ) = ?k(иk,ui) = ?k?ki
- Список литературы
- 1. Владимиров B.C., Жаринов В. В. Уравнения математической физики: Учебник для вузов. -- М.: Физмат-лит, 2000.
- 2. Владимиров В. С. Уравнения математической физики. -- Изд. 5-е. -- М.: Наука, 1985.
- 3. Никольский СМ. Математический анализ.--Изд. 5-е. -- М.: Физмат-лит, 2000.
Подобные документы
Понятие собственных векторов и собственных значений, их свойства и характеристики, порядок нахождения собственных векторов оператора. Критерии определения независимости и ортогональности собственных векторов. Факторы и теоремы положительных матриц.
реферат [350,1 K], добавлен 22.04.2010Определение линейного оператора. Непрерывные линейные операторы в нормированном пространстве. Ограниченность и норма линейного оператора. Обратный оператор. Спектр оператора и резольвента. Операторы: умножения на непрерывную функцию; интегрирования; сдвиг
дипломная работа [267,4 K], добавлен 27.05.2008Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.
статья [29,4 K], добавлен 21.05.2009Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.
курсовая работа [154,5 K], добавлен 13.11.2012Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
научная работа [22,6 K], добавлен 12.06.2009Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
доклад [26,6 K], добавлен 17.10.2009Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.
книга [1,7 M], добавлен 03.10.2011- Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператора
История нестандартного анализа. Линейные операторы. Обратный оператор. Обратимость. Резольвента линейного оператора. Резольвентное множество. Спектр. Введение в нестандартный анализ. Пример неархимедовой числовой системы.
дипломная работа [256,2 K], добавлен 08.08.2007 Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.
презентация [294,9 K], добавлен 14.11.2014Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
творческая работа [23,8 K], добавлен 17.10.2009