Доказательство великой теоремы Ферма для четных показателей степени
Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
Рубрика | Математика |
Вид | доклад |
Язык | русский |
Дата добавления | 17.10.2009 |
Размер файла | 26,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Файл: FERMA-2mPF-for
© Н. М. Козий, 2007
Авторские права защищены свидетельствами Украины
№ 27312 и № 28607
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ
Великая теорема Ферма формулируется следующим образом: диофантово уравнение(http://soluvel.okis.ru/evrika.html):
Аn+ Вn = Сn /1/
где n- целое положительное число, большее двух, не имеет решения в целых положительных числах.
Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:
Аn = Сn -Вn /2/
Пусть показатель степени n=2m. Тогда уравнение /2/ запишется следующим образом:
А2m = С2m -В2m /3/
Для доказательства великой теоремы Ферма используем алгебраическое доказательство теоремы Пифагора.
АЛГЕБРАИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА (Решение уравнения теоремы Пифагора в целых числах)
Теорема Пифагора формулируется следующим образом: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:
С2 =А2 + В2, /4/
где: С - гипотенуза; А и В - катеты.
Существуют прямоугольные треугольники, у которых стороны А, В и С выражаются целыми числами. Такие числа называются пифагоровыми.
Рассматривая уравнение теоремы Пифагора как алгебраическое уравнение, докажем, что существует бесконечное количество прямоугольных треугольников, в которых их стороны выражаются целыми числами или, что одно и тоже, уравнение /4/ имеет бесконечное количество решений в целых числах.
Суть теоремы Пифагора не изменится, если уравнение /4/ запишем следующим образом:
А2 = С2 -В2 /5/
Для доказательства теоремы Пифагора методами элементарной алгебры используем два известные в математике метода решения алгебраических уравнений: метод решения параметрических уравнений и метод замены переменных.
Уравнение /5/ рассматриваем как параметрическое уравнение с параметром A и переменными B и С. Уравнение /5/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:
А2=(C-B)•(C+B) /6/
Используя метод замены переменных, обозначим:
C-B=M /7/
Из уравнения /7/ имеем:
C=B+M /8/
Из уравнений /6/, /7/ и /8/ имеем:
А2 =M• (B+M+B)=M•(2B+M) = 2BM+M2 /9/
Из уравнения /9/ имеем:
А2- M2=2BM /10/
Отсюда: B = /11/
Из уравнений /8/ и /11/ имеем:
C= /12/
Таким образом: B = /13/
C /14/
Из уравнений /11/ и /12/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2 на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2.
Числа А и M должны иметь одинаковую четность.
По формулам /13/ и /14/ определяются числа B и C как переменные, зависящие от значения числа А как параметра и значения числа M.
Из изложенного следует: 1. Квадрат простого числа A равен разности квадратов одной пары чисел B и C (при M=1). 2. Квадрат составного числа A равен разности квадратов одной пары или нескольких пар чисел B и C. 3. Квадрат числа Am равен разности квадратов нескольких пар чисел. 4. Все числа A> 2 являются пифагоровыми.
Таким образом, существует бесконечное количество троек пифагоровых чисел А, В и С и, следовательно, бесконечное количество прямоугольных треугольников, у которых стороны А, В и С выражаются целыми числами.
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Вариант 1
Уравнение /3/ с учетом уравнений /5/ и /6/ запишем следующим образом:
А2m = С2m -В2m =(Сm -Вm )•(Сm +Вm) /15/
Тогда в соответствии с уравнениями /13/ и /14/ запишем:
Bm = /16/
Cm /17/
Из уравнений /16/ и /17/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2m на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2m. Следовательно, число A2m должно быть равно:
A2m = M· D, /18/
где D - целое число.
Тогда : Bm = /19/
А число Cm с учетом уравнения /8/ равно:
Cm = Bm + M = /20/
Тогда из уравнений /19/ и /20/ следует:
B = /21/
C /22/
Если допустить, что В - целое число, то из уравнения /22/ следует, что число С не может быть целым числом, так как сомножители в скобках в подкоренных выражениях в уравнениях /21/ и /22/ отличаются всего на 1.
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Вариант 2
Выше в доказательстве теоремы Пифагора доказано, что все натуральные числа являются пифагоровыми. Следовательно, все натуральные числа распределяются на тройки пифагоровых чисел и, следовательно, все тройки пифагоровых чисел удовлетворяют уравнению /4/:
С2 =А2 + В2 /23/
Пифагоровы числа (А, В, С) могут быть истолкованы как длины сторон прямоугольного треугольника, а их квадраты могут быть истолкованы как площади квадратов, построенных на гипотенузе и катетах этого треугольника. Умножив приведенное уравнение на С, получим:
С3=А2• С + В2· С /24/
Из уравнения /24/ следует, что объем куба раскладывается на два объема двух параллелепипедов. Поскольку очевидно, что в уравнении /23/ А<C и В<C, то из уравнения /24/ следует:
С3>А3 + В3 /25/
На всем множестве троек пифагоровых чисел ( а все натуральные числа образуют тройки пифагоровых чисел) при показателе степени n=3 не может быть ни одного решения уравнения /1/:
Аn+ Вn = Сn
Следовательно, на всем множестве натуральных чисел невозможно куб разложить на два куба.
Умножив уравнение /23/ на С2, получим:
С2•С2 =А2·С2 + В2•С2 /26/
Все члены этого уравнения представляют собой объемы параллелепипедов:
параллелепипед С2•С2 имеет в основании квадрат со стороной С и высоту С2;
параллелепипед А2•С2 имеет в основании квадрат со стороной А и высоту С2;
параллелепипед В2•С2 имеет в основании квадрат со стороной В и высоту С2.
Следовательно, в соответствии с уравнением /26/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов.
Поскольку, как показано выше, А<C и В<C, то из уравнения /26/ следует:
С4>А4 + В4 /27/
В общем случае уравнение /26/ можно записать следующим образом:
С2•Сn-2=А2·Сn-2 + В2•Сn-2 /28/
Сn=А2·Сn-2 + В2•Сn-2 /29/
Следовательно, в соответствии с уравнениями /28/ и /29/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов. Поскольку, как показано выше, А<C и В<C, то из уравнения /29/ следует:
Сn>Аn + Вn /30/
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при четных показателях степени.
Подобные документы
Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
творческая работа [23,8 K], добавлен 17.10.2009Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
творческая работа [27,7 K], добавлен 17.10.2009Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
научная работа [22,6 K], добавлен 12.06.2009Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья [16,4 K], добавлен 17.10.2009Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа [31,1 K], добавлен 18.01.2010Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
статья [35,2 K], добавлен 21.05.2009Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.
статья [29,4 K], добавлен 21.05.2009Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.
творческая работа [64,8 K], добавлен 20.05.2009Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья [20,8 K], добавлен 29.08.2004Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
творческая работа [17,4 K], добавлен 25.06.2009