Доказательство теоремы Ферма для n=4
Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
Рубрика | Математика |
Вид | творческая работа |
Язык | русский |
Дата добавления | 17.10.2009 |
Размер файла | 27,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
4
Доказательство великой теоремы Ферма для показателя степени n=4
Великая теорема Ферма формулируется следующим образом: диофантово уравнение:
Аn+ Вn = Сn (1)
где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.
Суть Великой теоремы Ферма не изменится, если уравнение (1) запишем следующим образом:
Аn = Сn - Вn (2)
Пусть показатель степени n=4. Тогда уравнение (2) запишется следующим образом:
А4 = С4 -В4 (3)
Уравнение (3) запишем в следующем виде:
А4 = (С2) 2 - (В2) 2 = (С2 -В2) • (С2 +В2) (4)
Пусть: (С2 -В2) = N4 (5)
Уравнение (5) рассматриваем как параметрическое уравнение 4 - ой степени с параметром N и переменными B и С. Преобразуем уравнение (5):
N4 = (С -В) · (С +В) (6)
Для доказательства используем метод замены переменных. Обозначим:
C-B=M (7)
Из уравнения (7) имеем:
C=B+M (8)
Из уравнений (6), (7) и (8) имеем:
N4=M• (B+M+B) =M• (2B+M) = 2B•M+M2 (9)
Из уравнения (9) имеем:
N4 - M2= 2B•M (10)
Отсюда:
B = (11)
Из уравнений (8) и (11) имеем:
C= (12)
Из уравнений (11) и (12) следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа N4 на число M, т.е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа N4.
Из уравнений (11) и (12) также следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел N и M: оба числа должны быть четными или оба нечетными.
Из уравнений (11) и (12) также следует:
С2 +В2= (13)
Обозначим:
С2 +В2 = K (14)
Пусть:
N=P•S; M=S2
Тогда:
K = С2 +В2 = (15)
Из уравнений (4), (5) и (15) следует:
A4 = N4• K=N4· S4• (16)
Отсюда следует:
A = N· S• (17)
Очевидно, что:
- дробное число.
То есть:
С2 + В2 ? R4; A4 ? N4•R4
Следовательно, в соответствии с формулой (17) число А - дробное число.
Другими словами, определенные по формулам (11) и (12) значения чисел B и С удовлетворяют только уравнению (5) и не удовлетворяют предполагаемому равенству:
С2 + В2 = R4
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах для показателя степени n=4.
Подобные документы
Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
творческая работа [23,8 K], добавлен 17.10.2009Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
статья [35,2 K], добавлен 21.05.2009Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
доклад [26,6 K], добавлен 17.10.2009Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.
статья [29,4 K], добавлен 21.05.2009Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
научная работа [22,6 K], добавлен 12.06.2009Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья [16,4 K], добавлен 17.10.2009Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа [31,1 K], добавлен 18.01.2010Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья [20,8 K], добавлен 29.08.2004Доказательство гипотезы Биля методами элементарной алгебры: сочетание методов решения параметрических уравнений и замены переменных (теорема Ферма). Ее формулировка в виде неопределенного уравнения, которое не имеет решения в целых положительных числах.
творческая работа [32,7 K], добавлен 29.05.2009Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.
творческая работа [64,8 K], добавлен 20.05.2009