Доказательство великой теоремы Ферма

Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 17.10.2009
Размер файла 16,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Файл: FERMA-forum

© Н. М. Козий, 2009

Авторские права защищены

свидетельством Украины

29316

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Оригинальный метод

Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):

Аn + Вn = Сn /1/

где n- целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:

Аn = Сn - Вn /2/

Рассмотрим решения уравнений /1/ и /2/ при нечетных значениях показателя степени n и при любых четных значениях показателя степени n.

Вариант 1: показатель степени n - нечетное число

Путем алгебраического преобразования уравнения /1/, методика которого здесь не приводится, получим следующее уравнение в общем виде:

Cn = An + Bn = (A+B)n - n• AB•(A+B)•N, /3/

где N - всегда целое число, равное:

N=[(A+B)n-(An+Bn)]/n•AB(A+B) /4/

Отсюда: Cn = An + Bn = (A+B)[ (A+B)n-1 - n• AB•N]; /5/

Cn = An + Bn = (A+B)n [ 1 - n• AB•N/(A+B)n-1 ] /6/

Обозначим: 1 - n• AB•N/(A+B)n-1 =R

Тогда уравнение /6/ запишется следующим образом:

Cn = An + Bn = (A+B)n· R /7/

Значения числа Cn, определенные по формулам /5/, /6/ и /7/, равные между собой целые числа, так как эти формулы эквивалентны. Однако очевидно, что число R - дробное число < 1. Из формулы /7/ следует:

C= = (A+B)• /8/

Поскольку число - дробное иррациональное число <1, то число C - дробное число.

Следовательно, великая теорема Ферма не имеет решения при нечетных показателях степени n.

Вариант 2: показатель степени n любое четное число

В этом случае путем алгебраического преобразования уравнения /2/ с помощью метода, который здесь также не приводится, получим следующее уравнение:

An = Cn - Bn =(C + B)n•[ 1 - B•N/(C +B)n-1], /9/

где N- целое число, равное:

N= [(C+B)n - (Cn - Bn)]/B(C+B).

Очевидно, что: 1 - BN/(C +B)n-1 = R- дробное число <1.

Уравнение /9/ в этом случае будет иметь вид:

An = Cn - Bn =(C + B)nR

А число A будет равно:

A =(C + B)•

Поскольку число - дробное иррациональное число <1, то число A - дробное число. Поэтому и при четных показателях степени n великая теорема Ферма не имеет решения в целых положительных числах.

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах.

P.S. При получении уравнений /6/ и /9/ использовался бином Ньютона.

В правильности приведенных здесь формул вы можете убедиться на конкретных числовых примерах.

Вариант 1: возьмите любые значения чисел A и B и нечетное значение показателя степени n, определите значение числа Cn сначала по формуле /1/, а затем по формуле /6/ и вы убедитесь, что они равны между собой.

Вариант 2: возьмите любые значения чисел C и B и четное значение показателя степени n, определите значение числа An сначала по формуле /2/, а затем по формуле /9/ и вы убедитесь, что они равны между собой.

Следовательно, расчеты по приведенным здесь формулам /6/ и /9/ из доказательства великой теоремы Ферма, выполненного мной с использованием бинома Ньютона, подтверждают, во-первых, правильность этих формул, а во-вторых, то, что великая теорема Ферма не имеет решения в натуральных числах.


Подобные документы

  • Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

    научная работа [31,1 K], добавлен 18.01.2010

  • Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

    статья [35,2 K], добавлен 21.05.2009

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад [26,6 K], добавлен 17.10.2009

  • Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.

    статья [20,8 K], добавлен 29.08.2004

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.

    творческая работа [23,8 K], добавлен 17.10.2009

  • Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

    научная работа [22,6 K], добавлен 12.06.2009

  • Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.

    реферат [13,2 K], добавлен 01.12.2010

  • Попытка доказательства частного случая великой теоремы Ферма. Преобразования уравнения xn+yn=zn, позволяющие получить квадратное уравнение. Показано, что вышеназванное равенство для трех действительных разных целых положительных чисел не выполняется.

    монография [59,3 K], добавлен 27.12.2012

  • Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

    творческая работа [64,8 K], добавлен 20.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.