Доказательство великой теоремы Ферма

Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

Рубрика Математика
Вид научная работа
Язык русский
Дата добавления 18.01.2010
Размер файла 31,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Автор инженер-механик

Козий Николай Михайлович

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Великая теорема Ферма формулируется следующим образом: диофантово уравнение:

Аn + Вn = Сn, (1)

где n- целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть великой теоремы Ферма не изменится, если уравнение (1) запишем следующим образом:

Аn = Сn - Вn (2)

Для доказательства великой теоремы Ферма предварительно докажем вспомогательную теорему (лемму).

ЛЕММА: Любое натуральное число N>2 в любой степени равно разности квадратов двух натуральных чисел:

Nn = U2 - V2 (3)

Уравнение (3) рассматриваем как параметрическое с параметром Nn и неизвестными переменными U и V. Уравнение (3) запишем следующим образом:

Nn = U2 - V2 = (U-V)•(U+V) (4)

Пусть: U - V=M (5)

Тогда: U = V + M (6)

Из уравнений (4), (5) и (6) имеем:

Nn=M• (V+M+V)=M•(2V+M) = 2V•M+M2 (7)

Из уравнения (7) имеем:

Nn - M2=2V•M (8)

Отсюда: V = (9)

Из уравнений (6) и (9) имеем:

U = (10)

Из уравнений (9) и (10) следует, что необходимым условием для того чтобы числа U и V были целыми, является одинаковая четность чисел Nn и M: оба числа должны быть четными или оба нечетными.

Из уравнений (9) и (10) также следует, что необходимым условием для того чтобы числа U и V были целыми, является делимость числа Nn на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа Nn. Следовательно, должно быть:

Nn =D·M (11)

где D - натуральное простое или составное число.

С помощью уравнений (9) и (10) определяются числа U и V, удовлетворяющие условиям уравнения (3).

Отсюда следует:

Следствие 1-е: Любое натуральное число N>2 в любой степени равно разности квадратов двух натуральных чисел.

Следствие 2-е: Число N=2 в степени n?3 равно разности квадратов одной пары или нескольких пар натуральных чисел:

Следствие 3-е: Любое составное натуральное число в любой степени равно разности квадратов одной пары или нескольких пар натуральных чисел:

Доказательство теоремы Ферма

С учетом доказанной леммы можно записать:

Nn = Аn = U2 - V2 (12)

Допустим, что великая теорема Ферма имеет решение в натуральных числах. Тогда с учетом уравнений (2) и (11) должны выполняться равенства:

Nn = D·M =Аn = Сn - Вn = U2 - V2 (13)

Вn = V2 (14)

Cn = U2 = (15)

В (16)

C (17)

В соответствии с формулами (13) и (14) число Вn равно:

Вn = (18)

Из уравнения (15) с учетом уравнения (13) следует:

Cn = (19)

Из уравнений (18) и (19) имеем:

В (20)

C (21)

Если допустить, что в соответствии с уравнением (20) В - целое число, то из уравнения (21) с очевидностью следует, что C - дробное число.

Таким образом, великая теорема Ферма не имеет решения в целых положительных (натуральных) числах.


Подобные документы

  • Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

    статья [16,4 K], добавлен 17.10.2009

  • Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

    статья [35,2 K], добавлен 21.05.2009

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад [26,6 K], добавлен 17.10.2009

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.

    творческая работа [23,8 K], добавлен 17.10.2009

  • Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.

    статья [20,8 K], добавлен 29.08.2004

  • Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.

    статья [29,4 K], добавлен 21.05.2009

  • Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

    научная работа [22,6 K], добавлен 12.06.2009

  • Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

    творческая работа [64,8 K], добавлен 20.05.2009

  • Содержание теоремы Ферма о ненулевых решениях уравнения вида xn+yn=zn в натуральных числах при значениях n>2. Доказательство теоремы Декартом, Эйлером, Уайлсом. Разработка основ дифференциального исчисления и теории вероятности - научные достижения Ферма.

    реферат [13,2 K], добавлен 01.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.