Доказательство великой теоремы Ферма
Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
Рубрика | Математика |
Вид | научная работа |
Язык | русский |
Дата добавления | 12.06.2009 |
Размер файла | 22,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Файл: FERMA-FIN © Н. М. Козий, 2008
Свидетельства Украины № 27312 и 28607
о регистрации авторского права
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ НЕЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ
Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):
Аn+ Вn = Сn* /1/
где n- целое положительное число, большее двух, не имеет решения в целых положительных числах A, B, С.
ДОКАЗАТЕЛЬСТВО
Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n. Рассмотрим случай, когда показатель степени n- нечетное число. В этом случае выражение /1/ преобразуется по известным формулам следующим образом:
Аn + Вn = Сn = (A+B)[An-1-An-2·B +An-3·B2- …-A·Bn-2+Bn-1] /2/
Полагаем, что A и B - целые положительные числа.
Из уравнения /2/ следует, что при заданных значениях чисел A и B множитель (A+B) имеет одно и тоже значение при любых значениях показателя степени n.
* Числа А, В и С должны быть взаимно простыми числами.
Уравнение /2/ действительно при любом нечетном значении показателя степени n. Следовательно, из уравнения /1/ при n =1 имеем:
А1 + В1 = С1
А + В = С /3/
Следовательно, число (А + В) является делителем числа С .
Допустим, что число С - целое положительное число. Тогда с учетом принятых условий и основной теоремы арифметики должно выполняться условие:
Сn = An + Bn =(A+B)n• Dn , /4/
где число D также должно быть целым числом.
Из уравнения /4/ следует:
/5/
Из уравнения /4/ также следует, что число [Cn = An + Bn] при условии, что число С - целое число, должно делиться на число (A+B)n . Однако известно, что:
An + Bn < (A+B)n /6/
Следовательно:
- дробное число, меньшее единицы. /7/
- дробное число.
Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ
Доказательство строим аналогично вышеизложенному доказательству для нечетных показателей степени. Любое четное число, за исключением числа p=2q, является произведением числа p на нечетные, простые или составные, числа. Следовательно, четный показатель степени можно записать следующим образом:
n= pkm = 2q •km, /8/
где: p=2q;
q =1, 2, 3,…;
k =1,3,5,7,9,…;
m=3,5,7,9,11,…
Тогда уравнение /1/ можно записать следующим образом:
Сn = An + Bn =Apkm + Bpkm= (Apk )m + (Bpk )m /9/
Поскольку показатель степени m - нечетное число, то алгебраическое выражение /9/ преобразуется аналогично уравнению /2/ следующим образом:
Cn = Cpkm = (Apk + Bpk)•[ (Apk )m-1 - (Apk )m-2 •Bpk +
+ (Apk )m-3 •(Bpk )2 -…- Apk •(Bpk )m-2 + (Bpk )m-1 ] /10/
При этом уравнения /4/ и /5/ преобразуются следующим образом:
Cn = Cpkm = (Apk + Bpk)m • Dpkm /11/
Dpkm = (Apkm + Bpkm) / (Apk + Bpk )m /12/
В соответствии с уравнением /6/:
(Apkm + Bpkm) < (Apk + Bpk )m /13/
Следовательно, число Dpkm - дробное число, меньшее единицы.
Отсюда следует, что и при четном показателе степени n= 2q •km уравнение /1/ не имеет решения в целых положительных числах.
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах, как при нечетном, так и при четном показателе степени n >2 и не равном n ?2q.
Для показателя степени n =2q существует иное доказательство великой теоремы Ферма.
Автор: Николай Михайлович Козий,
инженер-механик
Подобные документы
Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.
статья [29,4 K], добавлен 21.05.2009Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
доклад [26,6 K], добавлен 17.10.2009Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
творческая работа [23,8 K], добавлен 17.10.2009Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
творческая работа [27,7 K], добавлен 17.10.2009Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья [16,4 K], добавлен 17.10.2009Пьер де Ферма сделал почти 370 лет назад свою запись на полях арифметики Диофанта. Натуральные взаимно простые числа, не имеющие общих целых множителей, кроме 1. Пример справедливости приведенного доказательства.
статья [31,8 K], добавлен 19.12.2006Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
статья [35,2 K], добавлен 21.05.2009Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа [31,1 K], добавлен 18.01.2010Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
творческая работа [17,4 K], добавлен 25.06.2009Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1
статья [12,9 K], добавлен 07.07.2005