Доказательство Великой теоремы Ферма за одну операцию
Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 07.07.2005 |
Размер файла | 12,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Page 1
Идея предлагаемого вниманию читателя элементарного доказательства Великой теоремы Ферма исключительно проста: после разложения чисел a, b, c на пары слагаемых, затем группировки из них двух сумм U' и U'' и умножения равенства a^n + b^n - c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 11) (k+3)-я цифра в числе a^n + b^n - c^n (где k - число нулей на конце числа a + b - c) не равна 0 (числа U' и U'' умножаются по-разному!). Для постижения доказательства нужно знать лишь формулу бинома Ньютона, простейшую формулировку малой теоремы Ферма (приводится), определение простого числа, сложение двух-трех чисел и умножение двузначного числа на 11. Вот, пожалуй, и ВСЁ! Самое главное (и трудное) - не запутаться в десятке цифр, обозначенных буквами. Формальное описание истории теоремы и библиография в русском тексте опущены.
Доказательство приводится в редакции от 1 июня 2005 года (с учетом дискуссии на мехматовском сайте).
В.С.
Элементарное доказательство Великой теоремы Ферма
ВИКТОР СОРОКИН
ИНСТРУМЕНТАРИЙ: [В квадратных скобках приводится поясняющая, не обязательная информация.]
Используемые обозначения:
Все числа записаны в системе счисления с простым основанием n > 10.
[Все случаи с составным n, кроме n = 2k (который сводится к случаю n = 4), сводятся к случаю
простого n с помощью простой подстановки. Случаи n = 3, 5 и 7 здесь не рассматриваются.]
ak - k-я цифра от конца в числе a (a1 - последняя цифра).
[Пример для a = 1043: 1043 = 1x53 + 0x52 + 4x51 + 3x50; a1 = 3, a2 = 4, a3 = 0, a4 = 1.]
a(k) - окончание (число) из k цифр числа a (a(1) = a1; 1043(3) = 043). Везде в тексте a1 № 0.
[Если все три числа a, b и c оканчиваются на ноль, следует разделить равенство 1° на nn.]
(ain)1 = ai и (ain - 1)1 = 1 (см. Малую теорему Ферма для ai № 0). (0.1°)
(n + 1)n = (10 + 1)n = 11n = …101 (см. Бином Ньютона для простого n).
Простое следствие из бинома Ньютона и малой теоремы Ферма для s № 1 [a1 № 0]:
если цифра as увеличивается/уменьшается на 0 < d < n,
то цифра ans+1 увеличивается/уменьшается на d (или d + n, или d - n). (0.2°)
[В отрицательных числах цифры считаются отрицательными.]
***
(1°) Допустим, что an + bn - cn = 0 .
Случай 1: (bc)1 ? 0.
(2°) Пусть u = a + b - c, где u(k) = 0, uk+1 ? 0, k > 0 [известно, что в 1° u > 0 и k > 0].
(3°) Умножим равенство 1° на число d1n (см. §§2 и 2a в Приложении) с целью превратить
цифру uk+1 в 5. После этой операции обозначения чисел не меняются
и равенство продолжает идти под тем же номером (1°).
Очевидно, что и в новом равенстве (1°) u = a + b - c, u(k) = 0, uk+1 = 5.
(1*°) И пусть a*n + b*n - c*n = 0, где знаком “*” обозначены записанные в каноническом виде числа в равенстве (1°) после умножения равенства (1°) на 11n .
(4°) Введем в указанной здесь очередности следующие числа: u, u' = a(k) + b(k) - c(k),
u'' = u - u' = (a - a(k)) + (b - b(k)) - (c - c(k)), v = (ak+2 + bk+2 - ck+2)1, u*' = a*(k) + b*(k) - c*(k),
u*'' = u* - u*' = (a* - a*(k)) + (b* - b*(k)) - (c* - c*(k)), 11u', 11u'', v* = (a*k+2 + b*k+2 - c*k+2)1,
и вычислим две последние значащие цифры в этих числах:
(3a°) uk+1 = (u'k+1 + u''k+1)1 = 5;
(5°) u'k+1 = (-1, 0 или 1) - так как - nk < a'(k) < nk, - nk < b'(k) < nk, - nk < c'(k) < nk
и числа a, b, c имеют различные знаки;
(6°) u''k+1 = (4, 5 или 6) (см. 3a° и 5°) [важно: 1 < u''k+1 < n - 1];
(7°) u'k+2 = 0 [всегда!] - так как \u'\ < 2nk ;
(8°) u''k+2 = uk+2 [всегда!];
(9°) u''k+2 = [v + (ak+1 + bk+1 - ck+1)2]1, где (ak+1 + bk+1 - ck+1)2 = (-1, 0 или 1);
(10°) v = [uk+2 - (a(k+1) + b(k+1) - c(k+1))k+2]1 [где (a(k+1) + b(k+1) - c(k+1))k+2 = (-1, 0 или 1)] =
= [uk+2 - (-1, 0 или 1)]1;
(11°) u*k+1 = uk+1 = 5 - т.к. u*k+1 и uk+1 - последние значащие цифры в числах u* и u;
(12°) u*'k+1 = u'k+1 - т.к. u*'k+1 и u'k+1 - последние значащие цифры в числах u*' и u';
(13°) u*''k+1 = (u*k+1 - u*'k+1)1 = (3 - u*'k+1)1 = (4, 5 или 6) [важно: 1 < u*''k+1 < n - 1];
(14°) (11u')k+2 = (u'k+2 + u'k+1)1 (затем - в результате приведения чисел к каноническому виду -
величина u'k+1 «уходит» в u*''k+2, поскольку u*'k+2 = 0);
(14a°) важно: числа (11u')(k+2) и u*'(k+2) отличаются только k+2-ми цифрами, а именно:
u*'k+2 = 0, но (11u')k+2 № 0 в общем случае;
(15°) (11u'')k+2 = (u''k+2 + u''k+1)1;
(16°) u*k+2 = (uk+2 + uk+1)1 = (u''k+2 + uk+1)1 = (u''k+2 + 5)1;
(16а°) к сведению: u*'k+2 = 0 (см. 7°);
(17°) u*''k+2 = (u*k+2 +1, u*k+2 или u*k+2 - 1)1 = (см. 9°) = (u''k+2 + 4, u''k+2 + 5 или u''k+2 + 6)1;
(18°) v* = [u*k+2 - (a*(k+1) + b*(k+1) - c*(k+1))k+2]1
[где u*k+2 = (uk+2 + uk+1)1 (см. 16°), а (a*(k+1) + b*(k+1) - c*(k+1))k+2 = (-1, 0 или 1) - см. 10°] =
= [(uk+2 + uk+1)1 - (-1, 0 или 1)]1.
(19°) Введем числа U' = (ak+1)n + (bk+1)n - (ck+1)n, U'' = (an + bn - cn) - U', U = U' + U'',
U*' = (a*k+1)n + (b*k+1)n - (c*k+1)n, U*'' = (a*n + b*n - c*n) - U*', U* = U*' + U*'';
(19а°) к сведению: U'(k+1) = U*'(k+1) = 0.
(20°) Лемма: U(k+2) = U'(k+2) = U''(k+2) = U*(k+2) = U*'(k+2) = U*''(k+2) = 0 [всегда!].
Действительно, из 1° мы имеем:
U = an + bn - cn =
= (a(k+1) + nk+1ak+2 + nk+2Pa)n + (b(k+1) + nk+1bk+2 + nk+2Pb)n - (c(k+1) + nk+1ck+2 + nk+2Pc)n =
= (a(k+1)n + b(k+1)n - c(k+1)n) + nk+2(ak+2a(k+1)n - 1 + bk+2b(k+1)n - 1 - ck+2c(k+1)n - 1) + nk+3P =
= U' + U'' = 0, где
U' = a(k+1)n + b(k+1)n - c(k+1)n,
(20a°) U'' = nk+2(ak+2a(k+1)n -1 + bk+2b(k+1)n -1 - ck+2c(k+1)n -1) + nk+3P,
где (ak+2a(k+1)n -1 + bk+2b(k+1)n -1 - ck+2c(k+1)n -1)1 = (см. 0.1°)=
(20b°) = (ak+2 + bk+2 - ck+2)1 = U''k+3 = v (см. 4°).
(21°) Следствие: (U'k+3 + U''k+3)1 = (U*'k+3 + U*''k+3)1 = 0.
(22°) Вычислим цифру (11nU')k+3:
[так как числа (11u')(k+2) и u*'(k+2) отличаются только k+2-ми цифрами на величину
(11u')k+2), то на эту величину будут отличаться и цифры (11nU')k+3 и U*'k+3, это означает,
что цифра (11nU')k+3 будет на (11u')k+2 превышать цифру U*'k+3 (см. 0.2°)]
(11nU')k+3 = U'k+3 = (U*'k+3 + (11u')k+2)1 = (U*'k+3 + u'k+1)1.
(23°) Откуда U*'k+3 = U' k+3 - u'k+1.
(24°) Вычислим цифру U*'' k+3 :
U*'' k+3 = v* = (uk+2 + uk+1)1 - (-1, 0 или 1) - см. (18°);
(25°) Наконец, вычислим цифру (U*'k+3 + U*''k+3)1:
(U*'k+3 + U*''k+3)1 = (U*'k+3 + U*''k+3 - U'k+3 - U''k+3)1 = (U*'k+3 - U'k+3 + U*''k+3 - U''k+3)1 =
(см. 23° и 24°) = (- u'k+1 + v* - v) = (см. 18° и 10°) =
= (- u'k+1 + [uk+2 + uk+1 - (-1, 0 или 1)] - [uk+2 - (-1, 0 или 1)])1 =
= (- u'k+1 + uk+1 + (-2, -1, 0, 1, или 2))1 = (см. 3a°) =
( u''k+1 + (-2, -1, 0, 1, или 2))1 = (см. 6°) = (2, 3, 4, 5, 6, 7 или 8) № 0,
что противоречит 21° и, следовательно, выражение 1° есть неравенство.
Случай 2 [доказывается аналогично, но намного проще]: b (или c) = ntb', где b1 = 0 и bt+1 = b'1 № 0.
(26°) Введем число u = c - a > 0, где u(nt - 1) = 0, а unt ? 0 (см. §1 в Приложении).
(27°) После умножения равенства 1° на число d1n (с целью превратить цифру unt в 5)
(см. §§2 и 2a в Приложении) обозначения чисел сохраняются.
(28°) Пусть: u' = a(nt - 1) - c(nt - 1), u'' = (a - a(nt - 1)) - (c - c(nt - 1)) (где, очевидно, u''nt = (ant - cnt)1);
U' = a(nt)n + bn - c(nt)n (где U'(nt + 1) = 0 - см. 1° и 26°), U'' = (an - a(nt)n) - (cn - c(nt)n),
U*' = a*(nt)n + b*n - c*(nt)n (где U*'(nt + 1) = 0), U*'' = (a*n - a*(nt)n) - (c*n - c*(nt)n),
v = ant+1 - cnt+1.
Вычисления, полностью аналогичные вычислениям в случае 1, показывают, что nt+2-я цифра в равенстве Ферма не равна нулю. Число b во всех расчетах (кроме самой последней операции и в п. 27°) можно проигнорировать, т.к. цифры bnnt+1 и bnnt+2 при умножении равенства 1° на 11n не меняются (т.к. 11n(3) = 101).
Таким образом, для простых n > 7 теорема доказана.
==================
ПРИЛОЖЕНИЕ
§1. Если числа a, b, c не имеют общих сомножителей и b1 = (c - a)1 = 0,
тогда из числа R = (cn - an)/(c - a) =
= cn -1 + cn -2a + cn -3a2 + … c2an - 3 + can - 2 + an - 1 =
= (cn -1 + an -1) + ca(cn -3 + an -3) + … + c(n -1)/2a(n -1)/2 =
= (cn -1 - 2c(n -1)/2a(n -1)/2 + an -1 + 2c(n -1)/2a(n -1)/2) + ca(cn -3 - 2c(n -3)/2a(n -3)/2 + an -3 + 2c(n -3)/2a(n -3)/2) +
+ … + c(n -1)/2a(n -1)/2 = (c - a)2P + nc(n -1)/2a(n -1)/2 следует, что:
c - a делится на n2, следовательно R делится на n и не делится на n2;
так как R > n, то число R имеет простой сомножитель r не равный n;
c - a не делится на r;
если b = ntb', где b'1 № 0, то число c - a делится на ntn - 1 и не делится ntn.
§2. Лемма. Все n цифр (a1di)1, где di = 0, 1, … n - 1, различны.
Действительно, допустив, что (a1d1*)1 = (a1d1**)1, мы находим: ((d1* - d1**)a1)1 = 0.
Откуда d1* = d1**. Следовательно, множества цифр a1 (здесь вместе с a1 = 0) и d1 совпадают.
[Пример для a1 = 2: 0: 2x0 = 0; 1: 2x3 = 11; 2: 2x1 = 2; 3: 2x4 = 13; 4: 2x2 = 4.
При составном n Лемма несправедлива: в базе 10 и (2х2)1 = 4, и (2х7)1 = 4.]
§2a. Следствие. Для любой цифры a1 № 0 cуществует такая цифра di, что (a1di)1 = 1.
[Пример для a1 = 1, 2, 3, 4: 1x1 = 1; 2x3 = 11; 3x2 = 11; 4x4 = 31.]
ВИКТОР СОРОКИН
e-mail: victor.sorokine@wanadoo.fr
4 ноября 2004, Франция
P.S. Доказательство для случаев n = 3, 5 , 7 аналогично, но в (3°) цифра uk+1 превращается не в 5, а в 1, и в (1*°) равенство (1°) умножается не на 11n, а на некоторое hn, где h - некоторое однозначное число.
Подобные документы
Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
статья [35,2 K], добавлен 21.05.2009Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
научная работа [22,6 K], добавлен 12.06.2009Доказательство великой теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений и методов замены переменных. Теорема о единственности разложения на простые множители целых составных чисел.
статья [29,4 K], добавлен 21.05.2009Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа [31,1 K], добавлен 18.01.2010Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья [16,4 K], добавлен 17.10.2009Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
творческая работа [27,7 K], добавлен 17.10.2009Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
доклад [26,6 K], добавлен 17.10.2009Попытка доказательства частного случая великой теоремы Ферма. Преобразования уравнения xn+yn=zn, позволяющие получить квадратное уравнение. Показано, что вышеназванное равенство для трех действительных разных целых положительных чисел не выполняется.
монография [59,3 K], добавлен 27.12.2012Два варианта доказательства теоремы. Приведенные преобразования равенства Ферма над множеством натуральных чисел показывают, что с помощью конечного числа арифметических действий оно всегда приводится к тождеству, что и доказывает теорему.
статья [74,0 K], добавлен 14.04.2007Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья [20,8 K], добавлен 29.08.2004