Абсолютная и относительная погрешность
Сущность и математическая интерпретация абсолютной и относительной погрешности, способы записи величины вместе с ними. Понятие приближенного значения и погрешности приближения, направления анализа данных категорий. Правило округления десятичных дробей.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 13.09.2014 |
Размер файла | 77,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Реферат
Абсолютная и относительная погрешность
Введение
Абсолютная погрешность - является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины. Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если - измеренное значение, а - истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.
Существует несколько способов записи величины вместе с её абсолютной погрешностью.
· Обычно используется запись со знаком ±. Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с.
· Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,380 6488 (13)?10?23 Дж/К, что также можно записать значительно длиннее как 1,380 6488?10?23±0,000 0013?10?23 Дж/К.
Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):.
Относительная погрешность является безразмерной величиной, либо измеряется в процентах.
1. Что называется приближённым значением?
С избыточным и недостаточным? В процессе вычислений весьма часто приходится иметь дело с приближенными числами. Пусть А - точное значение некоторой величины, называемое в дальнейшем точным числом А. Под приближенным значением величины А, или приближенным числам, называется число а, заменяющее точное значение величины А. Если а < А, то а называется приближенным значением числа А по недостатку. Если а > А, - то по избытку. Например, 3,14 является приближенным значением числа р по недостатку, а 3,15 - по избытку. Для характеристики степени точности данного приближения пользуются понятием погрешности или ошибки.
Погрешностью Да приближенного числа а называется разность вида
Да = А - а,
где А - соответствующее точное число.
Из рисунка видно, что длина отрезка АВ заключена между 6 см и 7 см.
Значит, 6 - приближенное значение длины отрезка АВ (в сантиметрах) > с недостатком, а 7 - с избытком.
Обозначив длину отрезка буквой у, получим: 6 < у < 1. Если a < х < b, то а называют приближенным значением числа х с недостатком, a b - приближенным значением х с избытком. Длина отрезка АВ (см. рис. 149) ближе к 6 см, чем к 7 см. Она приближенно равна 6 см. Говорят, что число 6 получилось при округлении длины отрезка до целых.
2. Что называется погрешностью приближения?
А) Абсолютной?
Б) Относительной?
А) Абсолютной погрешностью приближения называется модуль разности между истинным значением величины и её приближённым значением. |x - x_n|, где x - истинное значение, x_n - приближённое. Например: Длина листа бумаги формата А4 равна (29.7 ± 0.1) см. А расстояние от Санкт-Петербурга до Москвы равно (650± 1) км. Абсолютная погрешность в первом случае не превосходит одного миллиметра, а во втором - одного километра. Вопрос, сравнить точность этих измерений.
Если вы думаете, что длина листа измерена точнее потому, что величина абсолютной погрешности не превышает 1 мм. То вы ошибаетесь. Напрямую сравнить эти величины нельзя. Проведем некоторые рассуждения.
При измерении длины листа абсолютная погрешность не превышает 0.1 см на 29.7 см, то есть в процентном соотношении это составляет 0.1/29.7 *100% = 0.33% измеряемой величины.
Когда мы измеряем расстояние от Санкт-Петербурга до Москвы абсолютная погрешность не превышает 1 км на 650 км, что в процентном соотношении составляет 1/650 *100% = 0.15% измеряемой величины. Видим, что расстояние между городами измерено точнее, чем длинна листа формата А4.
Б) Относительной погрешностью приближения называется отношение абсолютной погрешности к модулю приближённого значения величины.
математический погрешность дробь
где x - истинное значение, x_n - приближённое.
Относительную погрешность обычно вызывают в процентах.
Пример. При округлении числа 24,3 до единиц получается число 24.
Относительная погрешность равна. Говорят, что относительная погрешность в этом случае равна 12,5%.
5) Какое округление, называется округлением?
А) С недостатком?
Б) С избытком?
А) Округление с недостатком
При округлении числа, выраженного десятичной дробью, с точностью до 10^{-n} с недостатком сохраняют n первых знаков после запятой, а последующие отбрасываются.
Например, округляя 12,4587 до тысячных с недостатком, получим 12,458.
Б) Округление с избытком
При округлении числа, выраженного десятичной дробью, с точностью до 10^{-n} с избытком сохраняют n первых знаков после запятой, а последующие отбрасываются.
Например, округляя 12,4587 до тысячных с недостатком, получим 12,459.
6) Правило округления десятичных дробей.
Правило. Чтобы округлить десятичную дробь до определенного разряда целой или дробной части, все меньшие разряды заменяются нулями или отбрасываются, а предшествующий отбрасываемой при округлении цифре разряд не изменяет своей величины, если за ним идут цифры 0, 1, 2, 3, 4, и увеличивается на 1 (единицу), если идут цифры 5, 6, 7, 8, 9.
Пример. Округлить дробь 93,70584 до:
десятитысячных: 93,7058
тысячных: 93,706
сотых: 93,71
десятых: 93,7
целого числа: 94
десятков: 90
сотен: 100
Вывод
Несмотря на равенство абсолютных погрешностей, т.к. различны измеряемые величины. Чем больше измеряемый размер, тем меньше относительная погрешность при постоянстве абсолютной.
Размещено на Allbest.ru
Подобные документы
Методы вычислительной математики, работа с приближёнными величинами. Понятие абсолютной, предельной абсолютной и относительной погрешности приближённого числа. Выведение формулы предельной абсолютной и относительной погрешностей для заданной функции.
контрольная работа [85,3 K], добавлен 05.09.2010Округление заданного числа до шести, пяти, четырех и трех знаков. Расчет погрешностей после каждого округления. Определение абсолютной и относительной погрешности вычисления значений функции u с учетом того, что все знаки операндов a, b, c и d верны.
контрольная работа [131,5 K], добавлен 02.05.2012Классическая теория измерений по поводу истинного значения физической величины, ее главные постулаты. Классификация погрешностей по способу выражения, ее типы: абсолютная, приведенная и относительная. Случайные погрешности, закон их распределения.
реферат [215,4 K], добавлен 06.07.2014Из истории десятичных и обыкновенных дробей. Действия над десятичными дробями. Сложение (вычитание) десятичных дробей. Умножение десятичных дробей. Деление десятичных дробей.
реферат [8,3 K], добавлен 29.05.2006Процесс нахождения значения физической величины опытным путем с помощью специальных технических средств. Упрощенное описание объекта измерения с помощью математических формул. Инструментальные и методические, основная и дополнительная погрешности.
презентация [729,1 K], добавлен 19.07.2015Что такое абсолютные и относительные величины. Применение абсолютной и относительной величины в статистике. Прикладные варианты использования методов математической статистики в различных случаях решения задач. Опыт построения статистических таблиц.
контрольная работа [39,6 K], добавлен 12.12.2009Определение номера и значения членов прогрессии для бесконечно убывающей геометрической прогрессии. Вычисление относительной погрешности величины. Определение значений машинного нуля и бесконечности. Поведение погрешностей в зависимости от аргумента.
лабораторная работа [283,1 K], добавлен 15.11.2014Обозначение десятичной дроби в разное время. Использование десятичной системы мер в Древнем Китае. Запись дроби в одну строку числами в десятичной системе и правила действия с ними. Симон Стевин как фландрский учений, изобретатель десятичных дробей.
презентация [169,0 K], добавлен 22.04.2010Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.
курсовая работа [187,8 K], добавлен 18.05.2019Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.
контрольная работа [129,0 K], добавлен 13.03.2012