Марковская и полумарковская модели открытой сети с тремя узлами

Исследование стационарного распределения сетей массового обслуживания и доказательство инвариантности. Уравнения глобального равновесия и понятие эргодичности. Доказательство инвариантности стационарного распределения, а также определение его вида.

Рубрика Математика
Предмет Теория вероятностей
Вид дипломная работа
Язык русский
Прислал(а) smgorsky
Дата добавления 12.12.2009
Размер файла 439,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Математическая теория массового обслуживания как раздел теории случайных процессов. Системы массового обслуживания заявок, поступающих через промежутки времени. Открытая марковская сеть, ее немарковский случай, нахождение стационарных вероятностей.

    курсовая работа [374,3 K], добавлен 07.09.2009

  • Основные понятия теории массового обслуживания: марковский процесс, простой поток, сеть Джексона. Исследование стационарного распределения сети с ромбовидным контуром: для марковских и немарковских процессов, а также для сети с отрицательными заявками.

    дипломная работа [957,4 K], добавлен 17.12.2012

  • Определение, доказательство свойств и построение графика функции распределения. Вероятность попадания непрерывной случайной величины в заданный интервал. Понятие о теореме Ляпунова. Плотность распределения "хи квадрат", Стьюдента, F Фишера—Снедекора.

    курсовая работа [994,4 K], добавлен 02.10.2011

  • Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.

    реферат [29,1 K], добавлен 19.11.2010

  • Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.

    контрольная работа [420,3 K], добавлен 04.10.2010

  • Решение дифференциального уравнения, удовлетворяющие условию Липшица. Доказательство теоремы о существовании и единственности липшицевого решения. Принцип неподвижной точки (Шаудера). Пример неединственности (Winston). Доказательство по теореме Арцела.

    реферат [109,4 K], добавлен 14.01.2010

  • Характеристика открытой сети массового обслуживания с многорежимными стратегиями обслуживания, в которую поступают обычные положительные заявки и пуассоновские потоки информационных сигналов, оказывающие разовое воздействие на соответствующий узел сети.

    курсовая работа [221,8 K], добавлен 02.03.2010

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы.

    презентация [1,4 M], добавлен 26.09.2013

  • Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.

    курсовая работа [1,4 M], добавлен 15.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.