Марковская и полумарковская модели открытой сети с тремя узлами
Исследование стационарного распределения сетей массового обслуживания и доказательство инвариантности. Уравнения глобального равновесия и понятие эргодичности. Доказательство инвариантности стационарного распределения, а также определение его вида.
Рубрика | Математика |
Предмет | Теория вероятностей |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | smgorsky |
Дата добавления | 12.12.2009 |
Размер файла | 439,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Математическая теория массового обслуживания как раздел теории случайных процессов. Системы массового обслуживания заявок, поступающих через промежутки времени. Открытая марковская сеть, ее немарковский случай, нахождение стационарных вероятностей.
курсовая работа [374,3 K], добавлен 07.09.2009Основные понятия теории массового обслуживания: марковский процесс, простой поток, сеть Джексона. Исследование стационарного распределения сети с ромбовидным контуром: для марковских и немарковских процессов, а также для сети с отрицательными заявками.
дипломная работа [957,4 K], добавлен 17.12.2012Определение, доказательство свойств и построение графика функции распределения. Вероятность попадания непрерывной случайной величины в заданный интервал. Понятие о теореме Ляпунова. Плотность распределения "хи квадрат", Стьюдента, F Фишера—Снедекора.
курсовая работа [994,4 K], добавлен 02.10.2011Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.
реферат [29,1 K], добавлен 19.11.2010Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.
контрольная работа [420,3 K], добавлен 04.10.2010Решение дифференциального уравнения, удовлетворяющие условию Липшица. Доказательство теоремы о существовании и единственности липшицевого решения. Принцип неподвижной точки (Шаудера). Пример неединственности (Winston). Доказательство по теореме Арцела.
реферат [109,4 K], добавлен 14.01.2010Характеристика открытой сети массового обслуживания с многорежимными стратегиями обслуживания, в которую поступают обычные положительные заявки и пуассоновские потоки информационных сигналов, оказывающие разовое воздействие на соответствующий узел сети.
курсовая работа [221,8 K], добавлен 02.03.2010Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
творческая работа [27,7 K], добавлен 17.10.2009Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы.
презентация [1,4 M], добавлен 26.09.2013Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.
курсовая работа [1,4 M], добавлен 15.02.2009