Дифференциальные уравнения с запаздывающим аргументом

Решение дифференциального уравнения, удовлетворяющие условию Липшица. Доказательство теоремы о существовании и единственности липшицевого решения. Принцип неподвижной точки (Шаудера). Пример неединственности (Winston). Доказательство по теореме Арцела.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 14.01.2010
Размер файла 109,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Определения

Дифференциальные уравнения с запаздывающим аргументом вида

(1)

где , , , называются дифференциальными уравнениями с запаздыванием, зависящим от состояния, а именно с сосредоточенным запаздыванием.

Если заданы начальные данные в виде

(2)

То имеет смысл определить понятие решения, начинающегося в точке у с функции ц, или, короче, начинающегося в ц.

В дальнейшем будем рассматривать только решения, удовлетворяющие условию Липшица, поэтому следует дать следующее определение:

Def 1.Функция называется решением системы (1), (2) на отрезке , если она удовлетворяет следующим условиям:

на отрезке .

Естественно возникает вопрос о существовании и единственности такого решения.

Для начала сделаем некоторые обозначения.

a) есть функция, определенная на отрезке и удовлетворяющая условию Липшица с константой L, то есть

;

b)

c)

Def 2. удовлетворяет условиям a),b),c)}

2. Полезная лемма

Lemma 1: -выпуклое, замкнутое, ограниченное множество в пространстве непрерывных на отрезке функций.

Proof:

1)Выпуклость:

a)Выберем произвольные функции , тогда

b);

c)на отрезке на том же отрезке для любых .

2)Ограниченность:

Множество определено так, что все элементы этого множества лежат в шаре радиуса

3)Замкнутость:

Возьмем последовательность функций такую, что

, .

a)

Возьмем тогда

Так как это верно при любом , то получаем, что предельная функция удовлетворяет условию Липшица с константой L.

b) По теореме Кантора равномерно на отрезке.

Предположим, что при этом (для простоты доказательства предположим что , если , рассуждения проводятся аналогично)

Возьмем , тогда, так как для любого положительного и любого выполнено , то выполнено и для данных и t. Получим:

Так как по предположению , то получаем что , а это невозможно, так как . Противоречие показывает, что предельная функция ограничена по норме той же константой .

c)

на отрезке .

Видим, что выполнение условий a,b,c равнозначно тому что , то есть множество замкнуто.

Лемма доказана полностью.

3. Существование и единственность решения

Для доказательства теоремы о существовании и единственности липшицевого решения нам потребуется некоторые понятия и важные теоремы, доказательства которых можно, например, найти в книге Кадеца [3].

Def 2. Оператор Т называется вполне непрерывным (компактным), если Т непрерывен и Т отображает любое ограниченное множество в предкомпактное.

Def 3. Семейство Ф функций ц, определенных на называется равномерно ограниченным, если

Def 4.Семейство Ф функций ц, определенных на , называется равностепенно непрерывным, если

Теорема 1.(Арцела)

Для того чтобы семейство Ф непрерывных, определенных на отрезке функций было предкомпактом в , необходимо и достаточно, чтобы это семейство было равномерно ограниченным и равностепенно непрерывным.

Теорема 2.(Шаудера, принцип неподвижной точки)

Если U-замкнутое ограниченное выпуклое подмножество пространства Банаха X оператор вполне непрерывен, то Т имеет в U по крайней мере одну неподвижную точку.

Именно на теореме Шаудера основано доказательство теоремы о существовании и единственности решения.

Теорема 3.(существование и единственность решения системы (1).(2))

Пусть система (1),(2) такая что:

Тогда такая что на отрезке существует решение системы (1),(2), удовлетворяющее условию Липшица, и оно единственно.

Замечание. Для простоты возьмем , для других значений теорема доказывается аналогично, или сводится к этому случаю заменой переменных.

Доказательство: Проинтегрировав уравнение (1), увидим, что решение должно удовлетворять условию:

Обозначим

и будем искать решение в виде

Где

Определим оператор

,

Который действует из в себя, действительно, возьмем произвольный элемент

a) Проверим, удовлетворяет ли образ условию Липшица: возьмем

При

b)

При выполнено .

c) при по определению оператора.

Выполнение условий a,b,c означает что .

Для этого необходимо подобрать параметры так, чтоб одновременно выполнялись условия:

(3)

(4)

Покажем, что оператор Т осуществляет непрерывное отображение:

Возьмем последовательность такую что

Оценка выполнена на всем интервале, величина положительна и конечна, отсюда следует, что при |

также стремится к нулю, а значит оператор Т переводит сходящиеся последовательности в сходящиеся, а значит он непрерывен.

Компактность оператора будем доказывать по теореме Арцела, так как образ оператора лежит в пространстве с соответствующей нормой.

1),

правая часть не зависит ни от t, ни от y, значит образ оператора - равномерно ограниченное семейство функций.

2)

Выбирая получаем что образ оператора есть равностепенно непрерывное семейство функций.

А значит, образ множества предкомпакт, а оператор Т вполне непрерывен.

Так как множество ограничено, выпукло и замкнуто, а оператор Т компактен и действует из этого множества в себя, то по теореме Шаудера существует по крайней мере одна неподвижная точка из этого множества.

, а это значит, что - решение системы (1),(2).

Единственность:

Предположим, что при выполнении условий теоремы x и y - решения системы (1),(2) на интервале .

При оба решении совпадают с начальными данными, а значит равны между собой. На интервале оценим модуль разности функций, являющимися решениями.

Эта оценка верна для произвольного t отсюда немедленно следует, что

,

Выбирая таким малым, чтоб было меньше 1, получаем что , а значит на . Последовательно строя интервалы длинной закончим доказательство теоремы.

4.Пример неединственности (Winston)

Для уравнения с начальными данными

для малых положительных t существует два различных решения:

Действительно, проверим, удовлетворяют ли эти функции уравнению:

Значит, система имеет два различных решения. Это происходит потому что при малых t аргумент оказывается в окрестности -1, а при этих значениях начальные данные недостаточно гладки, не выполнено условие Липшица.

Список использованной литературы

[1] HALE J. K. Theory of functional differential equations. -Berlin; Heidelberg; New York: Springer, 1977.

[2] Резуненко А.В. Краткое введение в обыкновенные дифференциальные уравнения с запаздывающим аргументом. Харьков-2004.

[3] Кадец В.М. Курс функционального анализа. Харьков-2006.

[4] I.D.Chueshov. Introduction to the Theory of Infinite-Dimensional Dissipative Systems . «Аста»-2002.

[5] Д. Хенри. Геометрическая теория полулинейных параболических уравнений. Москва. «Мир»-1985.

[6] Колмогоров А.Н. Фомин С.В. Элементы теории функций и функционального анализа 1976


Подобные документы

  • Особенности выражения производной неизвестной функции. Общий вид дифференциального уравнения первого порядка, его решение. Сущность теоремы Коши (о существовании и единственности решения), её геометрический смысл. Общее и частное решение уравнения.

    презентация [77,7 K], добавлен 17.09.2013

  • Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.

    реферат [29,1 K], добавлен 19.11.2010

  • Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.

    презентация [206,3 K], добавлен 17.09.2013

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

    научная работа [31,1 K], добавлен 18.01.2010

  • Дифференциальное уравнение первого порядка. Формулировка теоремы существования и единственности. Линейные уравнения с постоянными коэффициентами. Доказательство теоремы существования и единственности для одного уравнения. Теория устойчивости Ляпунова.

    дипломная работа [1,0 M], добавлен 11.04.2009

  • Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.

    курсовая работа [347,1 K], добавлен 26.01.2015

  • Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

    доклад [26,6 K], добавлен 17.10.2009

  • Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

    статья [16,4 K], добавлен 17.10.2009

  • Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.

    контрольная работа [332,6 K], добавлен 14.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.