Эмпирические распределения. Гистограммы
Статистическая обработка данных контроля времени (в часах) работы компьютерного класса в день. Полигон абсолютных частот. Построение графика эмпирической функции распределения и огибающей гистограммы. Теоретическое распределение генеральной совокупности.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 23.08.2015 |
Размер файла | 379,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Задача.Контролируется время (в часах) работы компьютерного класса в день. Данные сведены в таблицу. Провести статистическую обработку данных по указанной выше методике.
39 52 28 36 95 49 12 54 25 26
46 22 5 30 18 72 30 63 37 55
Решение. Объем выборки . Расположим выборочные данные в порядке неубывания, получим вариационный ряд:
512 18 22 25 26 28 30 30 36
37 39 46 49 52 54 55 63 72 95 .
Находим . Значит, размах выборки .
Промежуток варьирования выборочных данных разбиваем на 5 равных частей точками: , получим 5 промежутков: . Считаем количество попаданий выборочных данных в каждый промежуток; при этом если какая-то варианта попадает на общую границу промежутков, мы добавляем по 0,5 к частотам обоих промежутков. В итоге получим интервальный статистический ряд.
Интервалы |
||||||
Частоты |
4 |
8 |
5 |
2 |
1 |
По интервальному статистическому ряду строим гистограмму (см. рис. 1).
Рис.1. Гистограмма абсолютных частот.
Чтобы перейти от интервального статистического ряда к группированному, нужно найти середины интервалов
Записываем группированный статистический ряд.
14 |
32 |
50 |
68 |
86 |
||
Частоты |
4 |
8 |
5 |
2 |
1 |
Строим полигон абсолютных частот (см. рис. 2).
Рис.2. Полигон абсолютных частот.
Для построения графика эмпирической функции распределения найдем ее значения. Если , то . Если , то . Если , то . Если , то . Если , то . Если , то .Эмпирическая функция распределения построена на рис. 3.
Рис.3. График функции .
Используя группированный статистический ряд, находим выборочную среднюю, исправленную выборочную дисперсию и среднее квадратическое отклонение соответственно по формулам (2), (4) с учетом (3) и (5). Получим
Для выбора теоретического закона построим огибающую к границе гистограммы (см. рис. 4). Вид огибающей похож на график плотности нормального распределения, поэттому выдвигаем гипотезу, что генеральная совокупность распределена по номальному закону. Известно, что нормальный закон имеет два параметра и . Учитывая найденные статистические оценки математического ожидания и дисперсии, положим
. Значит, теоретическое распределение будет иметь вид
Рис.4. Огибающая гистограммы.
Строим график теоретического распределения (см рис. 5).
функция график распределение гистограмма
Рис.5.Теоретическое распределение генеральной совокупности.
Размещено на Allbest.ru
Подобные документы
Построение полигона относительных частот, эмпирической функции распределения, кумулянты и гистограммы. Расчет точечных оценок неизвестных числовых характеристик. Проверка гипотезы о виде распределения для простого и сгруппированного ряда распределения.
курсовая работа [216,2 K], добавлен 28.09.2011Интервальный вариационный ряд. Построение гистограммы плотности относительных частот. Выдвижение гипотезы о законе распределения генеральной совокупности Х. Функция плотности рассматриваемого закона распределения "Построение ее на гистограмме".
курсовая работа [104,4 K], добавлен 20.03.2011Закон и свойства нормального распределения случайной величины. На основе критерия согласия Пирсона построение гистограммы, статистической функции и теоретической кривой и определение согласованности теоретического и статистического распределения.
курсовая работа [894,5 K], добавлен 30.10.2013Порядок и принципы построения вариационного ряда. Расчет числовых характеристик статистического ряда. Построение полигона и гистограммы относительных частот, функции распределения. Вычисление асимметрии и эксцесса. Построение доверительных интервалов.
контрольная работа [108,5 K], добавлен 03.10.2010Вероятность совместного появления двух белых шаров. Расчет числа исходов, благоприятствующих интересующему событию. Функция распределения случайной величины. Построение полигона частот, расчет относительных частот и эмпирической функции распределения.
задача [38,9 K], добавлен 14.11.2010Выборки к генеральной совокупности: оценка параметра и построение доверительных интервалов. Интервальный статистический ряд. Оценивание параметров распределения. Статистическая проверка гипотез. Гипотеза о нормальном распределении случайной величины.
контрольная работа [391,1 K], добавлен 23.06.2012Предмет, методы и понятия математической статистики, ее взаимосвязь с теорией вероятности. Основные понятия выборочного метода. Характеристика эмпирической функции распределения. Понятие гистограммы, принцип ее построения. Выборочное распределение.
учебное пособие [279,6 K], добавлен 24.04.2009Согласование выборочных распределений. Отбор статистических данных с помощью таблицы случайных чисел. Расчет числовых характеристик распределения выборочных частот. Проверка предположения, что распределение генеральной совокупности является нормальным.
курсовая работа [276,6 K], добавлен 19.01.2016Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.
контрольная работа [36,5 K], добавлен 14.11.2010Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.
контрольная работа [547,6 K], добавлен 02.02.2012