Внедрение систем компьютерной математики в профильное школьное математическое образование (на примере изучения систем линейных уравнений)
Математические и педагогические основы исследования системы линейных уравнений. Компьютерная математика Mathcad. Конспекты уроков элективного курса "Изучение избранных вопросов по математике с использованием системы компьютерной математики Mathcad".
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 03.05.2013 |
Размер файла | 1001,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
"Рязанский государственный университет имени С.А. Есенина"
Физико-математический факультет
Кафедра алгебры, геометрии и методики обучения математике.
Выпускная квалификационная работа
по теории и методике обучения математике
Внедрение систем компьютерной математики в профильное школьное математическое образование (на примере изучения систем линейных уравнений)
Выполнила студентка 5-го курса
Старикова А.В.
Руководитель работы:
Профессор Солонина А.Г.
Рязань-2009
Оглавление
- Введение
- Глава 1. Математические, информационные и психолого-педагогические основы исследования
- 1.1 Математические основы решения и исследования системы линейных уравнений
- 1.2 Информационные основы исследования. Система компьютерной математики mathcad
- 1.3 Психолого-педагогические основы исследования. Информатизация и компьютеризация образования
- Вывод по главе 1
- Глава 2. Внедрение системы компьютерной математики mathcad в профильное школьное математическое образование
- 2.1 Анализ целей обучения математике. Постановка целей обучения математике с использованием системы компьютерной математики MathCAD
- 2.2 Анализ содержания школьных учебников по теме: "Система линейных уравнений"
- 2.3 Формы организации обучения
- 2.4 Программа по элективному курсу
- 2.5 Конспекты некоторых уроков элективного курса "Изучение избранных вопросов по математике с использованием системы компьютерной математики MathCAD"
- Вывод по главе 2
- Заключение
- Литература
Введение
Актуальность темы исследования. По сравнению с уравнениями с одной переменной их системы часто оказываются более удобным аппаратом, как в самой математике, так и в ее приложениях. Можно указать много задач, решение которых с помощью уравнений с одной переменной требует большего труда (а иногда и искусства), чем решение с помощью системы уравнений, содержащей несколько переменных. Системы уравнений находят применение при изучении новых математических операций, функций и их свойств, тождеств и тождественных преобразований. Таким образом, решение систем уравнений является важным средством закрепления, углубления и развития теоретических знаний.
Системы уравнений решаются на протяжении всего курса математики, начиная с 7-9 классов, а решение и исследование линейных систем уравнений изучается только в 7 классе и 10-11 классах идет только лишь повторение.
Решать системы линейных уравнений можно различными методами. В наше время, время всеобщей компьютеризации, нас интересует можно ли их решать с помощью компьютера? Одной из таких компьютерных программ является система компьютерной математики MathCAD.
Интегрированные системы для автоматизации математических расчетов класса MathCAD (Math Computer-Aided Design), разработанные фирмой Math Soft(США), начали с успехом использоваться еще в середине 80-х годов. По сей день, они остаются единственными математическими пакетами, в которых описание решения математических задач дается с помощью привычных математических формул и знаков. Такой же вид имеют и результаты вычислений.
MathCAD - это мощная и в то же время простая универсальная среда для решения задач в различных отраслях науки и техники, финансов и экономики, физики и астрономии, математики и статистики… MathCAD остается единственной системой, в которой описание решения математических задач задается с помощью привычных математических формул и знаков. MathCAD позволяет выполнять как численные, так и аналитические (символьные) вычисления, имеет чрезвычайно удобный математико-ориентированный интерфейс и прекрасные средства научной графики.
MathCAD дает возможность решать также и системы уравнений. Максимальное число уравнений и переменных равно 50. Результатом решения системы будет численное значение искомого корня.
В MathCAD существует несколько способов решения систем линейных уравнений. Для решения совместных систем линейных уравнений следует использовать программы символьной математики, поскольку система уравнений может иметь неединственное решение, главные неизвестные выражаются в символьном виде через свободные неизвестные. Для решения совместных систем линейных уравнений будем использовать блок, включающий ключевое слово Given и встроенную функцию find.
Квадратную систему линейных уравнений вида (М- квадратная матрица, ранг которой равен числу ее строк, х- вектор неизвестных, - вектор свободных членов) можно найти, используя встроенную функцию lsolve. Матрица М - основная матрица данной системы уравнений.
Подробнее о том как решать системы линейных уравнений будет рассмотрено ниже.
Проблемой использования системы MathCAD в школах, в частности на уроках математики, занимались многие ученые, учителя, аспираты, а также сами студенты: Солонина А.Г., Дьяконов В.П., Карфидова Ю.ФА., Говядовская А.Н.
Объектом исследования в данной работе, является школьное математическое образование, а точнее решение и исследование систем линейных уравнений в школе.
Предмет исследования. Методическая система обучения школьников системе линейных уравнений с использованием компьютерной математики MathCAD.
Цель исследования состоит в разработке теоретических и методических снов использования системы MathCAD в процессе решения и исследования систем линейных уравнений в школе.
Цель исследования определила ряд конкретных задач:
1. Рассмотреть математические, информационные и психолого-педагогические основы исследования.
2. Проанализировать стандарты среднего (полного) общего образования по математике и информатике (базовый и профильный уровень), а также обязательный минимум содержания основных образовательных программ по математике и информатике.
3. Выявить возможности системы MathCAD изучения систем линейных уравнений.
4. Осуществить критический анализ содержания школьных учебников в связи с внедрением в процесс обучения системы компьютерной математики MathCAD.
5. Разработать содержание элективного курса по теме: решение и исследование систем линейных уравнений в связи с новыми требованиями информатизации и компьютеризации школьного математического образования.
Практическая значимость и научная новизна. Разработанный элективный курс может быть использован учителями в школе, школьниками при подготовке к самостоятельным и контрольным работам, экзаменам и для самостоятельного изучения математики, а также студентами педагогических вузов на занятиях по методике обучения математике.
В данной работе было сделано следующее:
1. Предложено преобразованное изложение школьной темы "Системы линейных уравнений", обоснованное на вузовской математике.
2. Осуществлен критический анализ содержания школьных учебников для классов с углубленным изучением математики, соответствующих обязательному минимуму содержания общего образования 1998 года и доработанные по федеральному компоненту государственного стандарта общего образования.
3. Произведен критический анализ целей обучения математики из государственного стандарта среднего (полного) общего образования по математике на профильном уровне.
4. Разработан элективный курс "Изучение избранных вопросов по математике с использованием системы компьютерной математики MathCAD", в котором осуществлена интеграция школьного курса алгебры и информатики (системы компьютерной математики MathCAD).
Достоверность и обоснованность результатов исследования обеспечены:
1) рациональным сочетанием теоретических и эмпирических методов исследования;
2) опорой основных положений и научных выводов на достижения педагогики, психологии, математики, теории и методике обучения математике;
3) соответствием используемых методов целям и задачам исследования.
Апробация результатов исследования. Результаты работы были представлены на студенческих конференциях по итогам 2007, 2008 годов в секции "Новые информационные технологии в математике", также в 2008 году результаты были опубликованы в сборнике трудов второй международной научно-практической конференции "Наука и образование XXI века".
Структура. Работа состоит из введения, двух глав с выводами по каждой из них, заключения и списка литературы.
Глава 1. Математические, информационные и психолого-педагогические основы исследования
1.1 Математические основы решения и исследования системы линейных уравнений.
Дадим определение системы линейных уравнений с m уравнениями и с n неизвестными (mn).
Определение. Системой из m-линейных уравнений с n неизвестными над полем P называется система вида
(1)
………………………...
Где , , ,
Первый индекс указывает на номер уравнения, а второй на номер неизвестного. Систему (1) можно записать в сокращенном виде:
, ()
Если m=n, то система называется квадратной. Для системы MathCAD m и n могут быть достаточно большими, например до 50 и более, и необязательно m=n.
Если посмотреть школьные учебники, которые мы рассмотрим более подробно во второй главе данной работы, то мы увидим, что там рассматриваются только квадратные системы.
Определение. Решением системы линейных уравнений (1) называется вектор такой, что имеют место m-истинных равенств:
()
………………………...
По умолчанию , т.е. . Совокупность равенств () можно записать в сокращенном виде:
, ()
Рассмотрим следующие важные для нас определения.
Определение. Система линейных уравнений называется совместной, если она имеет хотя бы одно решение. Система линейных уравнений называется несовместной, если она не имеет решений, т.е. множество всех ее решений пусто.
Определение. Две системы линейных уравнений называются равносильными, если каждое решение любой из этих систем является решением другой системы.
Для решения систем линейных уравнений необходимо ввести понятие матрицы. В школе матрицы не изучаются, однако матрицы - это таблицы, понять которые не представляет труда для школьников. В системе MathCAD можно ввести матрицы и производить различные операции над ними.
Определение. Таблица вида
А=, где , называется матрицей над полем или - матрицей над .
Введем следующие обозначения для строк и столбцов матрицы: -я строка матрицы обозначается через , ;
-й столбец матрицы обозначается через :
.
Матрицы А= и В= называются соответственно основной и расширенной матрицами системы уравнений (1).
Определение. Элементарными преобразованиями системы линейных уравнений называются следующие преобразования:
I. Умножение обеих частей какого-нибудь уравнения системы на ненулевой скаляр ,
II. Прибавление (вычитание) к обеим частям какого-либо уравнения системы соответствующих частей другого уравнения системы, умноженного на производный скаляр
III. Исключение из системы или присоединение к системе линейного уравнения с нулевыми коэффициентами и нулевым свободным членом.
С помощью элементарных преобразований можно решать любую систему линейных уравнений. Элементарные преобразования рассматриваются различные, выше мы рассмотрели как это у Куликова Л.Я. У другой автор А.И.Кострикин использует другое определение элементарных преобразований:
Одна система получена из другой при помощи элементарного преобразования типа (1), если в ней все уравнения, кроме i-го и k-го, остались прежними, а i-е и k-е уравнения поменялись местами. Если же во второй системе все уравнения, кроме i-го, те же, что и в первой, а i-е уравнение имеет вид , где с - какое-то число (т.е. , ), то полагаем, что к первой системе применено элементарное преобразование типа (2).
У обоих этих определений есть один общий так называемый "плюс", т.е. и у Куликова Л.Я., и у Кострикина А.И. указывается, а вернее точно говорится к какому уравнению прибавляем какое уравнение. И мы уже точно можем сказать, какое уравнение мы просто переписываем без изменений, а какое записываем в измененном виде. К сожалению, этого нет ни в одном проанализированном мною школьном учебнике по математике. Там просто говорят, что мы складываем два уравнения, и становится совершенно не понятно, какое именно уравнение мы оставим без изменения, а какое запишем в преобразованном виде? Поэтому у школьников возникают трудности с преобразованиями систем линейных уравнений. В следующих главах этой работы мы вернемся к этой проблеме, и будут предложены пути ее решения.
Докажем следующую очень важную для нас теорему.
Теорема. Если одна система линейных уравнений получается из другой системы линейных уравнений в результате цепочки элементарных преобразований, эти две системы равносильны.
Доказательство. Пусть дана система
(1)
Если умножить одно из ее равнений, например первое, на отличный от нуля скаляр , то получим систему
…………………………… (2)
Каждое решение системы (1) есть также решение системы (2). Обратно: если любое решение системы (2),т.е.
……………………………
то, умножив первое равенство на и не изменяя последующих равенств, получим равенства, показывающие, что вектор является решением системы (1). Следовательно, система (2) равносильна исходной системе (1). Также легко проверить, что однократное применение к системе (1) элементарного преобразования (РР) или (РРР) приводит к системе, равносильной исходной системе (1). Так как отношение равносильности транзитивно, то многократное применение элементарных преобразований приводит к системе уравнений, равносильной исходной системе (1).
А, теперь используя эту теорему, перейдем к решению систем линейных уравнений методом последовательного исключения переменных как это сделано у Куликова Л.Я.
Пусть дана система линейных уравнений
…………………………
Пусть А= и В=
Ведущим элементом строки матрицы называется первый (считая слева направо) ненулевой элемент строки. Столбец матрицы называется основным, если он содержит ведущий элемент какой-либо строки матрицы.
Определение. Элементарные преобразования над системой строк (столбцов) матрицы называются элементарными преобразованиями матрицы. Две матрицы называются строчечно-эквивалентными, если одна получается из другой при помощи цепочки элементарных преобразований над строками.
Определение. Матрица А называется ступенчатой, если она удовлетворяет условиям:
1. Нулевые строки матрицы (если они есть) расположены ниже всех ненулевых строк;
2. Если ведущие элементы ненулевых строк матрицы, то .
Примеры ступенчатых матриц:1) нулевая матрица, 2)однострочная матрица, 3) единичная матрица, 4) верхнетреугольная матрица.
Система линейных уравнений называется ступенчатой, если расширенная матрица системы есть ступенчатая матрица без нулевых строк. Система линейных уравнений называется приведенной ступенчатой, если расширенная матрица системы есть приведенная ступенчатая матрица.
Если B нулевая матрица, то любой n-мерный вектор является решением системы (1). Если же Aнулевая, а В ненулевая, то система уравнений (1) несовместна.
Предположим, что матрица A ненулевая. Тогда систему уравнений (1) можно при помощи элементарных преобразований привести к ступенчатой системе, а затем к приведенной ступенчатой системе, причем эти системы будут равносильны исходной системе (1). При помощи цепочки элементарных преобразований приведем систему уравнений (1) к ступенчатому виду без нулевых строк. Если последнее уравнение полученной системы имеет вид
, где
то полученная ступенчатая система уравнений несовместна и, следовательно, несовместна равносильная ей исходная система уравнений (1). Если же в левой части последнего уравнения полученной ступенчатой системы есть коэффициенты, отличные от нуля, то полученная ступенчатая система имеет вид
(2)
где коэффициенты , , отличны от нуля. Система (2) совместна и равносильна исходной системе(1).
От ступенчатой системы (2) при помощи цепочки элементарных преобразований переходим к ступенчатой системе уравнений
(3)
Система (3) совместна и равносильна исходной системе уравнений (1). Если при этом , то система уравнений (3) (и система (1)) имеет единственное решение ().Если же ,то система (3) равносильна системе
(4)
……………………………………
Уравнения системы (4) дают явное выражение переменных ,называемых главными, через переменные , называемые свободными. Придавая в уравнениях (4) свободным переменным любые значения из поля скаляров, находим соответствующие значения главных переменных. Таким образом, можно получить любое частное решение исходной системы уравнений (1), поскольку она равносильна системе (4). Поэтому вектор
(,,) (5)
называется общим решением системы уравнений (1). Вектор (5) можно записать в виде
(6)
где , и частное решение системы (1). Вектор (6) также называется общим решением системы (1).
Множество является множеством всех решений системы (1)
У А.И.Кострикина этот метод решения называется методом Гаусса. И мы привыкли в университете называть его методом Гаусса или методом последовательного исключения переменных, причем многие отождествляют эти два способа. Они очень похожи, но в то же время имеют отличие. Рассмотрим ход решения у А.И.Кострикина, а затем сравним его с решением выше. В начале решения ход его действий такой же, как и у Куликова Л.Я., т.е. он путем последовательного применения элементарных преобразований переходит к системе ступенчатого вида, которая эквивалентна исходной. Затем получает главные и свободные неизвестные, а дальше поднимаясь снизу вверх, получает, что значения для главных неизвестных определяются однозначно при любых заданных значениях для свободных неизвестных.
Таким образом, метод, который использует А.И.Кострикин, является объединением двух методов: первая часть решения - это метод последовательного исключения переменных, а вторая - это метод подстановки. Куликов Л.Я. использует метод последовательного исключения переменных и не использует метод подстановки.
В школе используется метод как у А.И.Кострикина. И, к сожалению, пока остается невыяснен вопрос, каким методом решает система MathCAD.
Применим указанный выше метод на конкретном примере.
Пример 1.1
Решить систему линейных уравнений:
В институте любой студент начнет ее решать, записав матрицу, которую приведет к ступенчатому виду, но в школе дети не знают, что такое матрица и поэтому их нужно научить приводить к ступенчатому виду всю систему, то есть применить метод последовательного исключения неизвестных.
Первый шаг. Первое уравнение оставляем без изменений, просто переписываем, а во всех других должны исключить переменную . Ко второму прибавляем первое уравнение, умноженное на (-3). Третье оставляем тоже без изменений, так как коэффициент при равен нулю. К четвертому прибавляем первое, умноженное на (-5). Получим систему равносильную данной:
Второй шаг. Первое и второе уравнения оставляем без изменений, просто переписываем. К третьему прибавляем второе уравнение, к четвертому прибавляем также второе уравнение, умноженное на (-1). Получили систему равносильную данной:
Третий шаг. Получили систему ступенчатого вида. Выделяем главные неизвестные, указываем свободные. Главные неизвестные - , ; свободные - , , . Выражаем главные неизвестные через свободные. Это процесс осуществляем, рассматривая уравнения снизу вверх, т.е. используем теперь метод подстановки (как у Кострикина А.И.):
Получили множество решений
В следующем пункте 1.2 мы рассмотрим, как этот же пример решает система MathCAD. И узнаем, какое же множество решений у нас получится.
А теперь рассмотрим очень важное понятие ранг, которое в школьных учебниках в явном виде не рассматривается, но на этом понятие основывается теория несовместимости систем линейных уравнений.
Определение. Строчечным рангом матрицы называется ранг системы ее строк , рассматриваемых как - -мерные векторы над полем Р. Столбцовым рангом матрицы называется ранг ее системы ее столбцов , рассматриваемых как -мерные векторы над полем Р.
Далее доказываются следующие теоремы:
Теорема. Строчечный ранг матрицы равен ее столбцовому рангу.
Теорема. Пусть А и В - соответственно основная и расширенная матрицы системы линейных уравнений (1). Равносильны следующие утверждения:
I. Система линейных уравнений (1) совместна.
II. Уравнение имеет решение над полем Р, где - столбец свободных членов, - вектор-столбец матрицы А.
III. Вектор есть линейная комбинация столбцов матрицы А.
IV. Столбцовые (строчечные) ранги матриц А и В равны, .
Теорема Кронекера - Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранг основной матрицы равен рангу расширенной матрицы. Следствие из этой теоремы: если ранг основной матрицы системы линейных уравнений равен числу уравнений системы, то система уравнений совместна.
1.2 Информационные основы исследования. Система компьютерной математики MathCAD
Одной из основных областей применения ПК являются математические и научно-технические расчеты. За последнее время мы стали свидетелями появления нового актуального, практически полезного и просто увлекательного научного направления - компьютерной математики. Ее можно определить как совокупность теоретических, методических, аппаратных и программных средств, в совокупности обеспечивающих эффективное автоматическое и диалоговое выполнение с помощью компьютеров всех видов, математических вычислений с высокой степенью их визуализации. К системам компьютерной математики относятся Derive, MuPAD, MathCAD, Mathematica, Maple V и Matlab. Это бурно развивающийся класс математических систем, который с равным успехом может использоваться в образовании и в сфере научной деятельности.
Широкую известность и заслуженную популярность в середине 80-х годов приобрели интегрированные системы для автоматизации математических расчетов класса MathCAD, разработанные фирмой MathSoft (США). Название системы происходит от двух слов - MATHematic (математика) и CAD (Computer Aided Design - системы автоматического проектирования, или САПР). По сей день, они остаются единственными математическими пакетами, в которых описание решения математических задач дается с помощью привычных математических формул и знаков. Такой же вид имеют и результаты вычислений. MathCAD позволяет выполнять как численные, так и аналитические (символьные) вычисления, имеет чрезвычайно удобный математико-ориентированный интерфейс и прекрасные средства научной графики. Именно поэтому MathCAD лучше всего подходит для применения его в школьном профильном образовании.
Система MathCAD существует в нескольких основных вариантах:
· MathCAD Standard - идеальная система для повседневных технических вычислений. Предназначена для массовой аудитории и широкого использования в учебном процессе;
· MathCAD Professional - промышленный стандарт прикладного использования математики в технических приложениях. Ориентирована на математиков и научных работников, проводящих сложные и трудоемкие расчеты.
В MathCAD очень удобный и привычный для пользователя интерфейс:
Рисунок 1.2.1
Строка задач стандартная, как и во всех программах и приложениях Windows, понятная панель инструментов.
Существуют различные возможности MathCAD для решения задач:
1. Использование главного меню.
2. С помощью математической панели.
3. Все вводить с клавиатуры
В наше время осталось очень мало людей, кто бы ни работал, с каким то не было приложениями Windows, поэтому разобраться, как работать в системе MathCAD не составит особого труда. Но чтобы правильно, без ошибок и более глубоко понять, как работает система, конечно же, нужны учебные пособия. А то получается, что система есть, а учебников к ней нет.
Решение систем линейных уравнений.
Максимальное число уравнений и переменных около 50. Результатом решения системы будет численное значение искомого корня.
Для решения совместных систем линейных уравнений следует использовать программы символьной математики, поскольку система уравнений может иметь неединственное решение, главные неизвестные выражаются в символьном виде через свободные неизвестные. Для решения совместных систем линейных уравнений необходимо использовать блок, включающий ключевое слово Given и встроенную функцию find.
Для решения системы уравнений необходимо выполнить следующее:
1. Напечатать ключевое слово Given. Оно указывает MathCAD, что далее следует система уравнений.
2. Ввести уравнения в любом порядке. Используйте [Ctrl]= для печати символа =.
3. Ввести любое выражение, которое включает функцию Find, например: а:= Find(х,у).
4. Затем напечатайте знак символьного оператора ().
Решение будет представлено в виде столбца-вектора, в котором указано, как главные неизвестные системы уравнений выражаются через свободные неизвестные.
Ключевое слово Given, уравнения, которые следуют за ним, и какое - либо выражение, содержащее функцию Find, называют блоком решения уравнений.
Блоки решения уравнений не могут быть вложены друг в друга, каждый блок может иметь только одно ключевое слово Given и имя функции Find.
Мы решили ту же систему уравнений, что и в пункте 1.1 только с помощью системы MathCAD (рисунок 1.2.2).
Рисунок 1.2.2.
Получили такое же множество решений, как и при решении вручную в предыдущем пункте. Скептики могу сказать, что решать в системе MathCAD можно и, не зная теории, а, просто зная алгоритм введения чисел и букв на компьютере, т.е. решение сводится к простому нажатию кнопок. Но это лишь так, кажется, на самом деле все не так просто, и если человек не умеет решать системы линейных уравнений вручную, самостоятельно, то он не сможет их решить и в системе компьютерной математики MathCAD. Он может столкнуться с рядом трудностей.
Рассмотрим следующий пример:
Пример 1.2.
Решить систему линейных уравнений:
Решение осуществляем точно также как и в примере 1.1., т.е. приводим систему к ступенчатому виду.
В итоге получили систему вида:
Главные неизвестные - , , свободные - и . Выражая главные неизвестные через свободные, получили множество решений :
Теперь посмотрим, как эту же систему решила система MathCAD. На рисунке 1.2.3 представлено решение в системе MathCAD, и как мы видим, множество решений получилось другое. И что же, кто-то ошибся? Школьник, сравнив свой ответ, например с одноклассниками, которые решали самостоятельно, обнаружит, что у него получилось другое множество решений. Тут возникает проблема, которую можно разрешить только доказав равенство двух получившихся множеств.
Рисунок 1.2.3.
Множество дано выше,
Нужно доказать, что . Доказывать будем методом двойного включения.
1.
Возьмем элемент из множества и докажем, что он принадлежит множеству , это значит, что и выражаются через и следующим образом:
,
Выразим отсюда и через и (т.к. во множестве свободными переменными являются и )
Получили
(,,, )
Таким образом мы взяли элемент принадлежащий множеству и показали, что он принадлежит и множеству
2. (доказательство аналогично).
Квадратную систему линейных уравнений вида (М- квадратная матрица, ранг которой равен числу ее строк, х- вектор неизвестных, - вектор свободных членов) можно найти, не только с помощью блока Given find, но и используя встроенную функцию lsolve. Матрица М - основная матрица данной системы уравнений. (Рисунок 1.2.4)
Алгоритм решения квадратных систем линейных уравнений:
1. Вставьте шаблон встроенной функции lsolve.
2. В первую метку шаблона введите основную матрицу системы уравнений.
3. Во вторую метку шаблона функции введите матрицу-столбец свободных членов системы уравнений.
4. Введите знак равенства. Ответ - единственный вектор-столбец, элементами которого являются действительные числа.
К сожалению, остается не выясненным вопрос, каким методом решает система MathCAD?
1.3 Психолого-педагогические основы исследования. Информатизация и компьютеризация образования
Широкое внедрение компьютерных технологий в нашу жизнь имеет психологическое последствия. В отечественной и зарубежной литературе выделяют следующие психологические феномены, связанные с освоением человеком новых информационных технологий: персонификацию, "одушевление" компьютера, когда компьютер воспринимается как живой организм; потребность в "общение" с компьютером и особенности такого общения, например, потребность в антропоморфном интерфейсе и эмоционально окрашенной логике; различные формы компьютерной тревожности; вопрос об ответственности создателей программного обеспечения за последствия его применения.[32], [33], [34], [35]. Ряд исследователей рассматривают компьютерные технологии как вторжение во внутренний мир человека, ведущее к возникновения у некоторых пользователей экзистенциального кризиса, сопровождающегося когнитивными и эмоциональными нарушениями. При этом может происходить переоценка ценностей, пересмотр взглядов на мировоззрение и свое место в мире.
Начальное изучение систем линейных уравнений приходится на 7 класс, т.е. на возраст 12-15 лет. Это средний школьный (подростковый) возраст характеризуется большой восприимчивостью, сенситивностью к усвоению норм, ценностей и способов поведения, которые существуют в мире взрослых и в их отношениях. В этом возрасте дети оценивают компьютер только как средство для развлечений: для разнообразных игр, для просмотра фильмов, для прослушивания музыки и т.д. Необходимо, чтобы школьники могли видеть компьютер не только как "умную игрушку", но и как полезную машину, с помощью которой можно добывать новые знания, облегчающие учебу. Изучив программу MathCAD, дети могу этим гордиться и даже хвастаться перед сверстниками, которые ее не изучали, т.к. в этом возрасте самое главное выделиться из толпы.
Если для младшего школьного возраста ведущей является учебная деятельность, то для школьника среднего возраста (подростка) в качестве ведущей выступает общественно полезная деятельность в разнообразных формах, в русле которой и интимно-личное общение со сверстниками, и очень важное общение с представителями другого пола. При этом учебная деятельность становится как бы осуществляемой активностью - она "обеспечивает" индивидуализацию подростка. В особенностях выбора средств, способов учебной деятельности он утверждает себя. Одновременная адаптация к одной новой общности, индивидуализация в другой, уже знакомой, и последующая интеграция в нее - это сложно переплетенные социально-психологические процессы, наиболее значимые для подростка. Найти себя в других - основная осознаваемая или интуитивно реализуемая потребность этого возраста.
Наряду с этим младший подросток характеризуется повышенной утомляемостью, ярко выраженной эмоциональностью, иногда резкостью в суждениях (до грубости). К концу периода младшего подростничества учащиеся начинают осознавать необходимость самостоятельного выбора дальнейшей программы образования, что предполагает сформированность достаточно устойчивых интересов и предпочтений, ориентацию в различных сферах труда и общественно полезной деятельности.
Информатизация образования, процесс обеспечения сферы образования методологией и практикой разработки и оптимального использования современных информационных технологий, ориентированных на реализацию психолого-педагогических целей обучения, воспитания. Этот процесс инициирует, во-первых, совершенствование механизмов управления системой образования на основе использования автоматизированных банков данных научно-педагогической информации, информационно-методических материалов, а также коммуникативных сетей; во-вторых, совершенствование методологии и стратегии отбора содержания, методов и организационных форм обучения и воспитания, соответствующих задачам развития личности обучаемого в современных условиях информатизации общества; в-третьих, создание методических систем обучения, ориентированных на развитие интеллектуального потенциала обучаемого, на формирование умений самостоятельно приобретать знания, осуществлять информационно-учебную, экспериментально-исследовательскую деятельность, разнообразные виды самостоятельной деятельности по обработке информация; в-четвёртых, создание и использование компьютерных тестирующих, диагностирующих методик контроля и оценки уровня знаний обучаемых.
В узком смысле информатизация образования -- внедрение в учреждения системы образования информационных средств, основанных на микропроцессорной технике, а также информационной продукции и педагогических технологии, базирующихся на этих средствах.
Компьютеризация обучения, в узком смысле применение компьютера как средства обучения, в широком многоцелевое использование компьютера в учебном процессе. Основные цели компьютеризации обучения: подготовить подрастающее поколение к жизни в информатизованном обществе, повысить эффективность обучения путем внедрения средств информатизации.
Различаются два направления компьютеризации (информатизации) обучения: овладение всеми способами применения компьютера в качестве средств учебной деятельности; использование компьютера как объекта изучения. Идеи применения компьютера как средства обучения возникли в 50-х гг. 20в. в рамках программированного обучения. В 1959 в школе №444 г. Москвы под руководством С.И.Шварцбурда был начат эксперимент по изучению старшеклассниками программирования и основ вычислительной техники. По мере совершенствования технических характеристик самого компьютера и его программного обеспечения, расширения его дидактических возможностей утвердилась идея о принципиально новых свойствах компьютера как средства обучения. Компьютер позволяет строить обучение в режиме диалога, реализовать индивидуализированное обучение, опирающееся на модель учащегося, его "историю обучения". Изменилась оценка роли и места компьютера в учебном процессе. К началу 90-х гг. были созданы десятки тысяч различных обучающих систем.
Компьютеризация обучения оказывает существенное воздействие на все компоненты учебного процесса. Значительное влияние компьютера на содержание обучения обусловлено, с одно стороны, тем, что для учащегося стало доступным многое из того, что ранее считалось посильным лишь для специалиста высокой квалификации. Это стало возможным благодаря возможностям компьютера в наглядном представлении учебного содержания; применению компьютерных средств, реализующих идеи искусственного интеллекта; предоставлению учащимся доступа к большим объемам необходимой им информации, в том числе и непосредственно относящейся к решаемой ими задаче. С другой стороны, компьютер позволяет включать в содержание обучения различные эвристические средства, прежде всего стратегии поиска решения задач. Важное значение имеет и то, что компьютер создаёт реальные предпосылки для создания интегрированных учебных предметов, разработки содержания профессионального обучения с учётом реальных производственных процессов, делает объектом изучения учащегося его собственную учебную деятельность.
Использование компьютера в учебных целях вносит значительные изменения в деятельность учащегося. Он освобождается от необходимости выполнения рутинных операций, имеет возможность, не обращаясь к педагогу, получить требуемую информацию.
Второе направление компьютеризации обучения, связанное с применением компьютера в качестве объекта изучения, в своём развитии также претерпело существенные изменения. В 60-х гг. в СССР цели компьютерной грамотности на уровне школьного обучения сводились преимущественно к знанию возможных применений компьютера и не предполагали умения практически пользоваться им для решения задач. В начале 70-х гг. практическое владение ЭВМ связывалось с обучением школьников программированию. В этом направлении накоплен значительный опыт и созданы предпосылки компьютеризации обучения. Со 2-й половины 70-х гг. изменился подход к определению сущности компьютерной грамотности, пересмотрена образовательная ценность различных видов знаний и умений. Основной акцент делается на решение задач с помощью компьютера и рациональное использование математического обеспечения.
Использование компьютера в качестве средства обучения выявило необходимость пересмотра многих теоретических положений дидактики и педагогической психологии. Так, экспертные системы, позволяющие довести учащегося до правильного решения задачи любой сложности, а также гипертекстные обучающие системы, предоставляющие учащемуся значительные возможности в выборе последовательности изучения учебного материала, требуют внесения корректив в соответствующие принципы обучения.
Следует иметь в виду, что компьютеризация обучения не решает все проблемы обучения, компьютер не может и не должен вытеснить из учебного процесса педагога, новые информационные технологии обучения не могут полностью заменить традиционные технологии. Компьютеризация обучения способствовала развитию дистанционного обучения.
Итак, растущее применение компьютеров во всех сферах человеческой деятельности порождает новые проблемы и дает толчок к развитию новых областей исследования. Изучение психологических и социальных аспектов взаимодействия человека и компьютера, а также поиск эффективных методов применения информационных технологий приобретают особую актуальность в настоящее время.
Вывод по главе 1
В данной главе я рассмотрела математические основы исследования. Были выявлены наиболее важные для нас определения и теоремы, на которые в дальнейшее мы будем ссылаться.
В информационных основах вы изучили основные принципы работы в системе компьютерной математики MathCAD. Узнали возможности этой системы при решении систем линейных уравнений. Эти знания мы будем применять во второй главе данной работы.
Рассмотренные психолого-педагогические основы, помогли нам увидеть проблемы связанные с внедрение компьютера в школьное математическое образование, а также указали на пути их разрешения.
Глава 2. Внедрение системы компьютерной математики MathCAD в профильное школьное математическое образование
2.1 Анализ целей обучения математике. Постановка целей обучения математике с использованием системы компьютерной математики MathCAD
Цель педагогического воздействия является системообразующим (определяющим) элементом педагогической системы, одним из главных звеньев педагогической деятельности. От нее зависят остальные элементы: содержание и средства получения результатов. Цель как научное понятие есть предвосхищение в сознании субъекта результата, на достижение которого направлена деятельность. С точки зрения психофизиологии, цель - это модель потребного будущего, закодированная в мозге человека, образ требуемого результата, определяющий отбор действий, ведущих к его достижению. Согласно кибернетике, цель - такая характеристика процесса, на основе которой осуществляется обратная связь. Система работает, сравнивая реальные результаты с запланированными целями. В педагогической системе цель - это мысленное, заранее определяемое представление о результате педагогического процесса, о качествах, состоянии личности, которые предполагается формировать. Она определяет требования к педагогическому процессу и служит эталоном для оценки результатов.
Педагогические цели могут быть разного масштаба и составляют некоторую иерархию - ступенчатую систему. Высшая ступень - государственные цели, общественный заказ. Можно сказать, это цели-ценности, которые отражают представление общества о человеке и гражданине страны. Они разрабатываются специалистами, принимаются правительством, фиксируются в законах и других документах. Примерами высших целей являются закон РФ "Об образовании", национальный проект "Образование", "Концепция модернизации Российского образования на период до 2010 года" и т.п.
Существуют также международные цели, например, Болонский процесс, к которому Россия присоединилась в сентябре 2003 года на берлинской встрече министров образования европейских стран.
Целями Болонского процесса, достижение которых ожидается к 2010 году, являются:
1) построение европейской зоны высшего образования как ключевого направления развития мобильности граждан с возможностью трудоустройства;
2) формирование и укрепление интеллектуального, культурного, социального и научно-технического потенциала Европы; повышение престижности в мире европейской высшей школы;
3) обеспечение конкурентоспособности европейских вузов с другими системами образования в борьбе за студентов, деньги, влияние; достижение большей совместимости и сравнимости национальных систем высшего образования; повышение качества образования;
4) повышение центральной роли университетов в развитии европейских культурных ценностей, в которой университеты рассматриваются как носители европейского сознания.
Следующая ступень - цели-стандарты, цели отдельных образовательных систем и этапов образования, они отражаются в образовательных программах и стандартах. Например, цели обучения в средней школе и на его отдельных уровнях: начальная, основная, полная средняя школа. Более низкая ступень - цели обучения по отдельному предмету или воспитания детей определенного возраста. Наконец, цели отдельной темы, урока или внеурочного мероприятия.
В истории человеческого общества глобальные цели воспитания изменялись и изменяются в соответствии с философскими концепциями, психолого-педагогическими теориями, с требованиями общества к образованию. В мировой практике имеются в настоящее время различные взгляды на цели воспитания, образования.
В США выработана в 20-е годы и сохраняется, частично изменяясь, концепция адаптации личности к жизни, согласно которой школа должна воспитать эффективного работника, ответственного гражданина, разумного потребителя и доброго семьянина. Школа прививает учащемуся ценности общества. В 80-е годы возникли такие программы, как "воспитание в целях выживания", "воспитание в духе мира" и другие. Это говорит о различных подходах к определению целей воспитания и об их зависимости от общих концепций, моделей воспитания.
Гуманистическая, либеральная педагогика преимущественно в Западной Европе (тоже с первой половины 20 века) провозглашает целью школы воспитание автономной личности с критическим мышлением и самостоятельным поведением, формирование человека, реализующего свои потребности, в том числе высшую потребность в самоактуализации, развитии внутреннего "Я".
Цель воспитания в Российской Федерации в самом общем виде формулируется как помощь личности в разностороннем развитии. Это отражено в законе РФ "Об образовании" от 10.07.1992 N 3266-1.
Образование служит решению "задач формирования общей культуры личности, ее адаптации к жизни в обществе, помощи в осознанном выборе профессии" (ст.9,п.2). Образование, согласно Закону, должно обеспечить выработку личностью жизненного самоопределения, создание условий для ее самореализации, формирование в сознании учащихся картины мира, адекватной современному знанию, формирование гражданина, интегрированного в обществе и направленного на его совершенствование (ст.14, п 1,2). Можно сказать, что политико-государственный, авторитарный, идеологический подход к постановке целей воспитания заменяется личностным подходом, более человечным и прагматическим: воспитать личность, способную самостоятельно принимать решения и нести за них ответственность, сформировать человека, сознательно строящего свою жизнь в сотрудничестве с другими членами общества. Такая цель воспитания, которой постепенно проникается педагогическое сознание в нашей стране, довольно близка западной гуманистической педагогике и является частью личностно ориентированного образования - концепции, в общих чертах принятой в нашей стране педагогическим сообществом.
В человеческом обществе многое стандартизируется, особенно в области производства. Образование тоже должно отвечать определенным требованиям, обладать необходимым качеством. Образовательные стандарты - это требования к содержанию и уровню знаний учащихся. Они описывают минимум знаний, умений, качеств, как выпускника общеобразовательной школы, так и специалиста, окончившего профессиональную школу. Стандарты призваны обеспечивать необходимое качество образования в стране и соответствие его международному уровню.
Рассмотрим стандарт среднего (полного) образования по математике. Изучение математики на профильном уровне среднего (полного) общего образования направлено на достижение следующих целей:
· формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
· овладение языком математики в устной и письменной форме, математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, продолжения образования и освоения избранной специальности на современном уровне;
· развитие логического мышления, алгоритмической культуры, пространственного воображения, математического мышления и интуиции, творческих способностей, необходимых для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
· воспитание средствами математики культуры личности через знакомство с историей развития математики, эволюцией математических идей; понимания значимости математики для научно-технического прогресса.
Проанализируем все эти цели с точки зрения обучения математике. В литературе цели рассматриваются на различных иерархических уровнях. В данном стандарте цели представлены на одном уровне. В современной литературе по теории и методике обучения математике существует несколько видов целей, т.е. цели различных уровней. Рассмотрим, например, такие уровни целей:
1. Стратегические цели.
2. Тактические цели.
3. Диагностируемые цели.
Цели в стандарте я отношу к тактическим целям. Разработаем цели, представив их в виде иерархии.
Стратегическая цель обучения математике. Если мы не будем ставить стратегические цели, то этим самым мы обедняем наше образование. Поэтому при постановке целей обучения математике мы должны вначале указать главные - стратегические цели, к которым должны стремиться. В настоящее время приоритетное место занимает личностный подход к образованию. Личностно ориентированное образование (в переводе с английского - personality-centered education) - это образование, которое обеспечивает развитие и саморазвитие личности учащихся.
Личность - это социальное качество индивида. Личность - это человек, взятый в системе таких его психологических характеристик, которые социально обусловлены, проявляются в общественных по природе связях и отношениях являются устойчивыми, определяют нравственные поступки человека, имеющие существенное значение для него самого и окружающих.
Личностно ориентированное образование осуществляется на основе выявления индивидуальных особенностей учащихся, субъектного опыта познания и предметной деятельности. И если рассматривать этот подход, то стратегической целью можно назвать - развитие личности каждого ученика. Соответственно, чтобы получить развитую личность учащегося, мы не должны забывать о личности самого учителя, поэтому среди стратегических целей можно также указать развитую личность учителя. Средством достижения этой цели является математика как школьный предмет. Обогащенное, научно-обоснованное содержание математики как школьного предмета является неоспоримым и наиболее важным аспектом этой цели.
Тактические цели обучения математике. Как уже говорилось выше тактические цели - это цели из стандарта. В этих целях нет ни слова об интеграции учебных дисциплин, также они написаны без учета внедрения системы компьютерной математики MathCAD. Наше нынешнее время называется временем интеграций. Скоро очень сложно будет представить математику, физику и другие школьные дисциплины без информатики, а, вернее, без компьютера. Поэтому интеграция неотъемлемый атрибут образования будущего.
Нередко одно и то же понятие в рамках каждого конкретного предмета определяется по-разному -- такая многозначность научных терминов затрудняет восприятие учебного материала. Несогласованность предлагаемых программ приводит к тому, что одна и та же тема по разным предметам изучается в разное время. Эти противоречия легко снимаются в интегрированном обучении, которое решает также ещё одну проблему -- экономии учебного времени.
Необходимо также отметить ещё один важный момент: интегрированное обучение призвано отразить интеграцию научного знания, объективно происходящую в обществе. Не освещать межнаучные связи или показывать их поверхностно было бы большим недостатком современной школы. Интегрированное обучение позволяет наиболее эффективно показать междисциплинарные связи и естественнонаучный метод исследования, используемый на стыке наук.
В действующих для общеобразовательных школ учебниках по математике и информатике, есть много абстрактных, формальных тренировочных упражнений для отработки техники вычисления, техники применения новых знаний, что является, безусловно, необходимым условием выработки вычислительных навыков. Но работа с подобными упражнениями, особенно на первых этапах изучения новой темы, часто кажется учащимся формальной, а порой ненужной. Разумеется, систематическая работа по данной теме приведет, в конечном счете, к положительным результатам по устранению формализма в восприятии выполняемой работы. Если показать на основе интеграции в начале изучения новой темы, практическое решение какой-либо проблемы (может быть даже достаточно сложной) и подчеркнуть, что дальнейшая деятельность по отработке вычислительных и практических навыков нужна будет для того, чтобы в будущем самостоятельно решать подобные сложные проблемы,-- то этап проведения тренировочных упражнений не будет выглядеть оторванным от практических нужд. Кроме того, включение на этом этапе элементов интеграции всё более и более будет способствовать выделению практической значимости проводимой тренировочной работы.
Поэтому я считаю, что обязательно в тактических целях необходимо указывать интеграцию математики с другими школьными предметами, в данном случае я предлагаю интеграцию математики с информатикой. Возможны следующие тактические цели обучения математике с использованием системы MathCAD:
1. создание оптимальных условий для развития мышления учащихся в процессе обучения математике и информатике на основе интеграции этих предметов.
2. повышение и развитие интереса учащихся к указанным предметам.
Диагностируемые цели. Цели, которые были поставлены в стандарте не диагностируемые. Диагностируемые это значит те цели, которые можно проверить.
Укажем, например, такие диагностируемые цели (для профильного класса):
- учащийся умеет грамотно выполнять алгоритмические предписания и инструкции на математическом языке в системе компьютерной математики MathCAD;
- учащийся умеет пользоваться математическими формулами в системе MathCAD, самостоятельно составлять формулы зависимостей между величинами
- учащийся умеет проводить аргументированные рассуждения, делать логически обоснованные выводы, отличать доказанные утверждения от недоказанных, аргументировать суждения.
Подобные документы
Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.
курсовая работа [565,7 K], добавлен 08.03.2016Структура и элементы, принципы формирования и правила разрешения систем линейных алгебраических уравнений. История развития различных методов решения: матричного, Крамера, с помощью функции Find. Особенности применения возможностей программы Mathcad.
контрольная работа [96,0 K], добавлен 09.03.2016Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.
контрольная работа [35,1 K], добавлен 24.06.2009Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция [24,2 K], добавлен 14.12.2010Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.
курсовая работа [220,0 K], добавлен 21.10.2011Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.
реферат [111,8 K], добавлен 09.06.2011Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.
презентация [987,7 K], добавлен 22.11.2014Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.
реферат [532,7 K], добавлен 10.11.2009Примеры операций над матрицами. Ранг матрицы. Обратная матрица. Системы линейных уравнений. Метод Гаусса для решения систем линейных уравнений, две его составляющие: прямой и обратный ходы. Решение системы по формулам Крамера. Построение параболы.
контрольная работа [33,2 K], добавлен 05.02.2009- Основы вычислительной математики и использование системы Mathcad 14 для решения вычислительных задач
Методы, используемые при работе с матрицами, системами нелинейных и дифференциальных уравнений. Вычисление определенных интегралов. Нахождение экстремумов функции. Преобразования Фурье и Лапласа. Способы решения вычислительных задач с помощью Mathcad.
учебное пособие [1,6 M], добавлен 15.12.2013