Высшая математика. Матрица

Примеры операций над матрицами. Ранг матрицы. Обратная матрица. Системы линейных уравнений. Метод Гаусса для решения систем линейных уравнений, две его составляющие: прямой и обратный ходы. Решение системы по формулам Крамера. Построение параболы.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 05.02.2009
Размер файла 33,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

19

Министерство образования

Российской Федерации

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

КОНТРОЛЬНАЯ РАБОТА

2003

1(Т85.РП). Найдите матрицу D=(AC-AB), если

А= 1 0 ,C= 3 4 4 , B= -3 1 4 .

2 -2 1 -3 5 2 -3 4

(В ответ ввести вторую строку матрицы D.)

Решение:

Размеры матриц А и С согласованны, т.к. число элементов в строке матрицы А равно числу элементов в столбце матрицы В.

а*с= 1 0 * 3 4 4 = 1*3+0*1 1*4+0*(-3) 1*4+0*5 = 3 4 4

2 -2 1 -3 5 2*3+(-2)*1 2*4-2*(-3) 2*4-2*5 4 14 -2

А*В= 1 0 * -3 1 4 = 1*(-3)+0*2 1*1+0*(-3) 1*4+0*4 = -3 1 4

2 -2 2 -3 4 2*(-3)-2*2 2*1-2*(-3) 2*4-2*4 -10 8 0

D=А*С-А*В= 3 4 4 _ -3 1 4 = 3-(-3) 4-1 4-4 = 6 3 0

4 14 -2 -10 8 0 4-(-10) 14-8 -2-0 14 6 -2

Ответ :14 , 6 , -2.

2(3ТО).Вычислите определитель D= 2 2 1 0

1 1 1 0

1 2 2 1

0 3 2 2

Решение:

2 2 1 0

1 1 1 0

1 2 2 1 =

0 3 2 2

Умножим третью строку на (-2) и сложим с четвёртой строкой , результат запишем

в четвёртую строку:

2 2 1 0

1 1 1 0

= 1 2 2 1 =

-2 -1 -2 0

Данный определитель разложим по элементам четвёртого столбца :

3+4 2 2 1

= 1*(-1) * 1 1 1 =

-2 -1 -2

Умножим вторую строку на (-2) и сложим с первой, результат запишем в первую строку . Умножим вторую строку на 2 и сложим с третьей , результат запишем в третью строку .

0 0 -1

= - 1 1 1 = - (-1) 1+3 * (-1) * 1 1 = 1-0 =1;

0 1 0 0 1

Ответ: D = 1.

3(598.Р7).Решите матричное уравнение

1 2 1 1 1 -1

X* 4 3 -2 = 16* -1 2 3

-5 -4 -1 0 -1 -2 .

Решение:

A*X=B , X=A-1 *B

Найдём det A:

1 2 1

det A= 4 3 -2 = 1*3*(-1)+1*4*(-4)+2*(-2)*(-5)-1*3*(-5)-2*4*(-1)-1*(-2)*(-4)=

-5 -4 -1

=-19+20+15-8+8=16 ;

det= 16 ? 0;

Составим матрицу А -1 , обратную матрицы А:

А1 1 = 3 -2 = -3 -8 = -11

-4 -1

А12 = - 4 -2 = -(-4-10) = 14

-5 -1

А13 = 4 3 = -16+15 = -1

-5 -4

A21 = - 2 1 = -(-2+4) = -2

-4 -1

A22 = 1 1 = -1+5 = 4

-5 -1

A23 = - 1 2 = - (-4+10) = -6

-5 -4

A31 = 2 1 = - 4-3 = -7

3 -2

A32 = - 1 1 = - (-2-4) = 6

-2

A33 = 1 2 = 3 -8 = -5

4 3

-11/16 -2/16 -7/16

А-1 = 14/16 4/16 6/16

-1/16 -6/16 -5/16

-11/16 -2/16 -7/16 1*16 1*16 -1*16

Х = 14/16 4/16 6/16 * -1*16 2*16 3*16 =

-1/16 -6/16 -5/16 0*16 -1*16 2*16

-11*1+(-2*(-1))+(-7*0) -11*1+(-2*2)+(-7*(-1)) -11*(-1)+(-2*3)+(-7*2)

= 14*1+4*(-1)+6*0 14*1+4*2+6*(-1) 14*(-1)+4*3+6*2 =

-1*1+(-6*(-1))+(-5*0) -1*1+(-6*2)+(-5*(-1)) -1*(-1)+(-6*3)+(-5*2)

-9 -8 -9

= 10 16 10

5 -8 -27

Ответ : Х = : -9 , -8 , -9 : 10 , 16 , 10 : 5 , -8 , -27 .

4(4П5).При каком значении параметра p , если он существует ,

1 2 -2 1

последняя строка матрицы А = 2 -3 3 2 является линейной комбинацией первых

1 -1 1 2

8 -7 p 11

трёх строк?

Решение :

Вычислим det A:

1 2 -2 1 1 2 -2 1 -7 7 0 -7 7 0

det A = 2 -3 3 2 = 0 -7 7 0 = 3 -3 -1 = 3 -3 -1 =

1 -1 1 2 0 3 -3 -1 23 -16-p -3 14 -7-p 0

8 -7 p 11 0 23 -16-p -3

-1*(-1) 2+3 * -7 7 = 49 + 7p - 98 = 7p - 49

14 -7-p

Если det A=0 , то ранг матрицы А равен двум , т.е. 7p - 49 = 0 , p = 7.

Третья строка по теореме о базисном миноре является комбинацией первых двух .

Обозначим коэффициенты этой комбинации через л1 и л2 , л3 ,тогда (8,-7,7,11) = л1(1,2,-2,1)+ + л2 (2,-3,3,2) + л3 (1,-1,1,2);

Имеем систему : л1 + 2л2 + л3 = 8 * 2

1- 3л2 - л3 = -7

-2л1 + 3л2 + л3 = 7

л1 + 2л2 + 2л3 = 11

Решим данную систему методом Гаусса :

л1 + 2л2 + л3 = 8 1) л3 = 3

2 + 3л3 = 23 2) 7л2 + 9 = 23

2 + 3л3 = 23 7л2 = 14

л3 = 3 л2 = 2

3) л1 + 2*2 + 3 =8

л1 = 1

коэффициенты линейных комбинаций л1 = 1 ; л2 = 2 ; л3 = 3 ;

Ответ : (8,-7,7,11) = 1(1,2,-2,1)+ 2(2,-3,3,2) + 3(1,-1,1,2) .

5. Относительно канонического базиса в R3 даны четыре вектора f1(1,1,1) , f2 (1,2,3) , f3 (1,3,6), x(4,7,10). Докажите, что векторы f1, f2 , f3 можно принять за новый базис в R3 . (ТР0.РП) . Найдите координаты вектора x в базисе fi .

Составим определитель из компонент векторов и f1, f2 , f3 вычислим его :

1 1 1 1 1 1

? = 1 2 3 = 0 1 2 = 1*(-1)1+1 * 1 2 = 5 - 4 = 1

1 3 6 0 2 5 2 5

Так как ? ? 0 , то векторы f1, f2 , f3 образуют базис трёхмерного пространства R3

Для вычисления координат вектора x в этом базисе составим систему линейных уравнений :

х1 + х2 + х3 = 4 *(-1)

х1 + 2х2 + 3х3 = 7

х1 + 3х2 + 6х3 = 10

х1 + х2 + х3 = 4

х2 + 2х3 = 3 *(-2)

2 + 5х3 = 6

х1 + х2 + х3 = 4 1) х3 = 0 3) х1 + 3 + 0 = 4

х2 + 2х3 = 3 2) х2 + 0 = 3 х1 = 4 - 3

х3 = 0 х2 = 0 х1 = 1

х1 = 1 , х2 = 0 , х3 = 0 .

Решение этой системы образует совокупность координат вектора x в базисе f1, f2 , f3

x(1;3;0);

x = f1 + 3f2 + 0f3;

x = f1 + 3f2 .

Ответ : координаты вектора x (1;3;0).

6. Докажите , что система

1 + 2х2 + х3 = 8,

х1 + х2 + х3 = 3,

х1 + 2х2 + 2х3 + х4 = 3,

2 + 2х3 +2х4 = 3

имеет единственное решение . (362).Неизвестное х2 найдите по формулам Крамера . (0М1.РЛ) . Решите систему методом Гаусса .

Решение:

Составим матрицу из коэффициентов при переменных

2 2 1 0

А = 1 1 1 0

1 2 2 1

0 3 2 2

Вычислим определитель матрицы А

2 2 1 0 2 2 1 0 2 2 1 1 1 0

? = 1 1 1 0 = 1 1 1 0 = (-1)3+4 * 1 1 1 = - 1 1 1 =

1 2 2 1 1 2 2 1 -2 -1 -2 0 1 0

0 3 2 2 -2 -1 -2 0

= - (-1)2+3 * 1 1 = 1

0 1

? ? 0, тогда система имеет решение х2 = ? х2 /?

2 8 1 0 2 8 1 0 2 8 1 2 8 1

? х2 = 1 3 1 0 = 1 3 1 0 = (-1)3+4 * 1 3 1 = - 1 5 0 =

1 3 2 1 1 3 2 1 -2 -3 -2 0 3 0

0 3 2 2 -2 -3 -2 0

= -(-1)1+3 * 1 5 = ( 3 + 0 ) = 3

0 8

х2 = 3 /1 = 3.

Решим систему методом Гаусса

1 + 2х2 + х3 = 8 *(-2) *(-1)

х1 + х2 + х3 = 3

х1 + 2х2 + 2х3 + х4 = 3

2 + 2х3 +2х4 = 3

х1 + х2 + х3 = 3

- х3 = 2

х2 + х3 + х4 = 0 *(-3)

2 + 2х3 +2х4 = 3

х1 + х2 + х3 = 3

х2 + х3 + х4 = 0

- х3 - х4 = 3

х3 = -2

1) х3 = - 2 3) х2 - 2 - 1 = 0

2) 2 - х4 = 3 х2 = 3

х4 = -1 4) х1 + 3 - 2 = 3

х1 = 2

Проверка :

2 + 3 - 2 =3, 3 = 3

4 + 3*3 - 2 = 8, 8 = 8

2 + 6 - 4 - 2 = 3, 3 =3

9 - 4 - 2 = 3 , 3 = 3.

Ответ : х1 = 2 , х2 = 3 , х3 = - 2 , х4 = -1.

7. Дана система линейных уравнений

1 + х2 - х3 - х4 = 2,

1 + х2 - 2х3 - х4 = 7,

х1 - х2 - х4 = -1,

х1 + х2 - х3 -3х4 = -2.

Докажите ,что система совместна . Найдите её общее решение . (392.БЛ). Найдите частное решение , если х4 = 1 .

Доказательство :

Система линейных уравнений совместна тогда и только тогда , когда ранг основной матрицы

системы равен рангу расширенной матрицы .

Составим расширенную матрицу :

3 1 -1 -1 2 0 -2 2 8 8 0 0 1 6 7

А = 9 1 -2 -1 7 > 0 -8 7 26 25 > 0 0 3 18 21 =0

1 -1 0 -1 -1 0 -2 1 2 1 0 -2 1 2 1

1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2

Первая и вторая строка пропорциональны следовательно А = 0. Поэтому ранг матрицы и расширенной матрицы равны 3 поэтому система является совместной .

Решим систему методом Гаусса :

запишем последнее уравнение на первое место :

х1 + х2 - х3 -3х4 = -2

1 + х2 - х3 - х4 = 2

1 + х2 - 2х3 - х4 = 7

х1 - х2 - х4 = -1

1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2

С = 3 1 -1 -1 2 > 0 2 -2 -8 -8 > 0 2 -2 -8 -8 >

9 1 -2 -1 7 0 8 -7 -26 -25 0 0 -1 -6 -7

1 -1 0 -1 -1 0 2 -1 -2 -1 0 0 -1 -6 -7

х1 + х2 - х3 -3х4 = -2

> 2х2- 2х3 -8х4 = -8

- х3 -6х4 = -7.

1) х3 = 7 - 6х4

2) х2 - х3 -4х4 = -4

х2 = х3 + 4х4 - 4

х2 = 7 - 6х4 + 4х4 - 4

х2 = 3 - 2х4

3) х1 = - х2 + х3 + 3х4 - 2

х1 = - 3 + 2х4 + 7 - 6х4 + 3х4 - 2

х1 = 2 4 .

Получаем общее решение системы :

х1 = 2 4

х2 = 3 - 2х4

х3 = 7 - 6х4.

Найдём частное решение , если х4 = 1 тогда

х1 = 2 - 1 = 1;

х2 = 3 - 2*1 = 1;

х3 = 7 - 6*1 =1.

Ответ : (1;1;1;1) - частное решение .

8. Дана система линейных однородных уравнений

1 +3х2 - х3 - х4 + х5 = 0,

1 - 2х2 - 3х3 -3х5 = 0,

х1 - 3х2 + 2х3 -5х4 -2х5 = 0.

Докажите , что система имеет нетривиальное решение . Найдите общее решение системы . Найдите какую-нибудь фундаментальную систему решений Доказательство :

Система имеет нетривиальное решение тогда и только тогда , когда ранг её матрицы меньше числа неизвестных .В этом случае ранг матрицы не больше трёх , а переменных в системе пять .

Решим систему методом Гаусса .

Запишем матрицу системы :

2 3 -1 -1 1 1 -3 2 -5 -2

А = 3 -2 3 0 -3 > 0 9 -5 9 5 ¦*7 >

1 -3 2 -5 -2 0 7 -3 15 3 ¦*(-9)

1 -3 2 -5 -2

> 0 9 -5 9 5

0 0 -8 -72 8

х1 -3х2 + 2х3 - 5х4 -2х5 = 0

2 - 5х3 + 9х4 +5х5 = 0

-8х3 -72х4 +8х5 = 0

1) 8х3 = -72х4 + 8х5

х3 = - 9х4 + х5

2) 9х2 + 45х4 - 5х5 + 9х4 +5х5 = 0

2 + 36х4 = 0

х2= - 4х4

3) х1 +12х4 - 18х4 + 2 х5 - 5х4 -2х5 = 0

х1 - 11х4 = 0

х1 =11х4

Общее решение системы :

х1 =11х4

х2= - 4х4

х3 = - 9х4 + х5

Найдём фундаментальную систему решений , положив х4 = 1 , х5 = 0.

х1 =11*1 = 11,

х2= - 4*1 = -4,

х3 = - 9*1 + 0 = -9.

Пусть х4 = 0, х5 = 1.

х1 =11*0 = 0,

х2= - 4*0 = 0,

х3 = - 9*0 + 1 = 1.

Ответ : (11;-4;-9;1;0)

(0; 0; 1; 0; 1).

9 (3СА). Найдите площадь параллелограмма , построенного на векторах а = 2р + 3r, b = p -2r , | p | = v2 , | r | = 3, (p,^r) = 45° .

Решение :

S =| [а , b] | = | [2р + 3r , p -2r] | = | 2[p , p] - 4[p, r ] + 3[r , p] -6[r , r] |

[p , p] = 0 , [r , r] = 0 , [r , p] = - [p, r ] .

S = | 7[r , p] | = 7| r | * | p | * sinц

S = 7 * 3 * v2 * sin 45° = 21 * v2 * v2 / 2 =21 .

Ответ :S =21 .

10 (78Т). Вычислите ПрBD[BC ,CD] , если B(6,3,3) ; C(6,4,2) ; D(4,1,4) .

Решение :

Найдём координаты векторов

BD = ( 4 - 6 , 1 - 3 , 4 - 3 ) = ( - 2 ; - 2 ; 1 ),

BC = ( 6 - 6 , 4 - 3 , 2 - 3 ) = ( 0 ; 1 ; - 1 ),

CD = ( 4 - 6 , 1 - 4 , 4 - 2 ) = ( - 2 ; - 3 ; 2 ).

Найдём векторное произведение :

i j k

[BC ,CD] = 0 1 -1 = i (2 - 3) - j (0 -2) + k (0 + 2) = - i + 2j + 2k .

-2 -3 2

Пусть [BC ,CD] = а , тогда а = ( -1 ; 2 ; 2 )

ПрBD а = ( BD , a ) /| BD |

( BD , a ) = -2*( -1 ) - 2*2 + 1*2 = 2 -4 + 2 = 0 .

ПрBD а = 0 .

Ответ : ПрBD а = 0 .

11. Линейный оператор А действует в R3 > R3 по закону Ax = (- х1 + 2х2 + x3 , 5х2 , 3х1 + 2х2 + х3 ), где х( х1, х2, х3 ) - произвольный вектор .(125.РП). Найдите матрицу А этого оператора в каноническом базисе . Докажите , что вектор х(1,0 ,3) является собственным для матрицы А .(Т56). Найдите собственное число л0 , соответствующее вектору х . (Д25.РП). Найдите другие собственные числа , отличные от л0 . Найдите все собственные векторы матрицы А и сделайте проверку .

Решение :

Ax = (- х1 + 2х2 + x3 ; 5х2 ; 3х1 + 2х2 + х3 )

Найдём матрицу в базисе l1 , l2 , l3

A l1 = (-1 ; 2 ;1)

A l2 = (0 ; 5 ; 0)

A l3 = (3 ; 2 ; 1)

-1 2 1

A = 0 5 0

3 2 1 .

Докажем , что вектор х = (1 ,0 ,3) является собственным для матрицы А.

Имеем

-1 2 1 1 -1 + 0 + 3 2 1

Aх = 0 5 0 * 0 = 0 + 0 + 0 = 0 = 2 * 0

3 2 1 3 3 + 0 + 3 6 3 .

Отсюда следует , что вектор х = (1 ,0 ,3) собственный и отвечает собственному числу л = 2 .

Составляем характеристическое уравнение :

-1 - л 2 1

0 5 - л 0 = 0

3 2 1 - л

(5 - л)*((-1 - л)*(1 - л) - 3) = 0

5 - л = 0 или л2 -1 - 3 = 0

л2 = 4

л = ±2

л1 = 2 , л2 = -2 , л3 = 5 .

Запишем систему для определения собственного вектора, отвечающего собственному числу л = -2.

х1 + 2х2 + х3 = 0 х2 = 0

2 = 0

1 + 2х2 + 3х3 = 0

х1 + х3 = 0 х1 = -х3

1 + 3х3 = 0

Пусть х3 = 1 ,тогда х1 = -1 , имеем собственный вектор х1 = (-1 ;0 ;1) .

Проверка :

-1 2 1 -1 1 + 0 + 1 2 -1

A = 0 5 0 * 0 = 0 + 0 + 0 = 0 = -2 * 0

3 2 1 1 -3 + 0 + 1 -2 1

Следовательно , х1 = (-1 ;0 ;1) собственный вектор и отвечает собственному числу л = -2.

Найдём собственный вектор для л = 5

-6х1 + 2х2 + х3 = 0

1 + 2х2 - 4х3 = 0

-9х1 + 5х3 = 0

х1 = 5/9 х3

-6*(5/9 х3) + 2х2 + х3 = 0

-10/3 х3 + х3 + 2х2 = 0

2 = 7/3 х3

х2 = 7/6 х3 .

Пусть х3 = 18 , тогда х1 = 10 , х2 = 21 .

Вектор х2 = (10 ;21 ;18) собственный вектор .

Проверка

-1 2 1 10 -10 + 42 + 18 50 10

A = 0 5 0 * 21 = 0 + 105 + 0 = 105 = 5 * 21

3 2 1 18 30 + 42 + 18 90 18 .

Следовательно , х2 = (10 ;21 ;18) собственный и отвечает собственному числу л = 5 .

Ответ : матрица в каноническом базисе : -1 , 2 , 1 : 0 , 5 , 0 : 3 , 2 , 1; вектор х = (1 ,0 ,3) собственный и отвечает собственному числу л = 2 , х1 = (-1 ;0 ;1) собственный вектор и отвечает собственному числу л = -2 , х2 = (10 ;21 ;18) собственный и отвечает собственному числу л = 5 .

12(Д01.РП).Составьте общее уравнение прямой , проходящей через точку М(1,4) параллельно прямой 2х + 3y + 5 = 0.

Решение :

Найдём угловой коэффициент прямой 2х + 3y + 5 = 0.

3y = -2x -5

y = -2/3 x - 5/3

к = -2/3

Так как исходная прямая параллельна данной , то её угловой коэффициент равен к = -2/3 .

Уравнение прямой имеющей угловой коэффициент к и проходящей через точку М(х0,y0) записывается в виде

y - y0 = к(x - x0).

Имеем

y - 4 = -2/3 (x - 1)

3y - 12 = -2x + 2

2х + 3y - 14 = 0.

Ответ : 2х + 3y - 14 = 0 - уравнение искомой прямой .

13(3А2.РП).Найдите координаты проекции точки М(3,6) на прямую х + 2y - 10 = 0.

Решение :

Пусть N - проекция точки М на данную прямую .

Составим уравнение прямой MN угловой коэффициент заданной прямой х + 2y - 10 = 0 равен к1 = -1/2 , тогда угловой коэффициент прямой MN равен к2 = 2 .

Тогда уравнение MN имеет вид y - y0 = 2(x - x0) .

Для определения координат точки N решим систему уравнений

х + 2y - 10 = 0

y - y0 = 2(x - x0) , x0 = 3 , y0 = 6 .

х + 2y - 10 = 0 2х + 4y - 20 = 0

y - 6 = 2(x - 3) -2х + y = 0

4y = 20

y = 4

2х = y

х = Ѕ y

х = Ѕ * 4 = 2

х = 2 .

Ответ : координаты проекции точки М(3,6) на прямую х + 2y - 10 = 0 N(2,4).

14(103.БЛ). Запишите общее уравнение плоскости , походящей через три заданные точки M1(-6,1,-5) , M2(7,-2,-1) , M3(10,-7,1) .

Решение :

Уравнение плоскости , проходящей через 3 точки имеет вид

x-x1 y-y1 z-z1

x2-x1 y2-y1 z2-z1 = 0

x3-x1 y3-y1 z3-z1

x-6 y-1 z+5

7+6 -2-1 -1+5 = 0

10+6 -7-1 1-5

x-6 y-1 z+5

13 -3 4 = 0

16 -8 -4

(x -6)* -3 4 - (y - 1)* 13 4 + (z + 5)* 13 -3 = (x -6)*(12+32) - (y - 1)*(-52-64)+

-8 -4 16 -4 16 -8

+ (z + 5)*(-104+48) = 0

(x -6)*44 - (y - 1)*(-116) + (z + 5)*(-56) = 0

11*(x -6) + 29*(y - 1) - 14*(z + 5) = 0

11x - 66 + 29y - 29 - 14z - 70 = 0

11x + 29y - 14z - 165 = 0 .

Ответ : общее уравнение плоскости 11x + 29y - 14z - 165 = 0 .

15.Дана кривая 4x2 - y2 - 24x + 4y + 28 = 0 .

8.1.Докажите , что эта кривая - гипербола .

8.2 (325.Б7).Найдите координаты её центра симметрии .

8.3 (Д06.РП).Найдите действительную и мнимую полуоси .

8.4 (267.БЛ). Запишите уравнение фокальной оси .

8.5. Постройте данную гиперболу .

Решение :

Выделим полные квадраты

4(x2 - 6x + 9) - 36 - (y2 - 4y + 4) + 4 + 28 = 0

4(x - 3)2 - (y - 2)2 - 4 = 0

4(x - 3)2 - (y - 2)2 = 4

((x - 3)2/1) - ((y - 2)2/4) = 1

Положим x1 = x - 3 , y1 = y - 2 , тогда x12/1 - y12/4 =1 .

Данная кривая является гиперболой .

Определим её центр

x1 = x - 3 = 0 , x = 3

y1 = y - 2 = 0 , y = 2

(3 ; 2) - центр .

Действительная полуось a =1 .

Мнимая полуось b =2 .

Уравнение асимптот гиперболы

y1 = ± b/a x1

(y - 2) = (± 2/1)*(x - 3)

y -2 = 2x - 6 и y - 2 = -2(x - 8)

2x - y - 4 = 0 2x + 2y - 8 = 0

x + y - 4 = 0 .

Определим фокусы гиперболы

F1(-c ; 0) , F2(c ; 0)

c2 = a2 + b2 ; c2 = 1 + 4 = 5

c = ±v5

F1(-v5; 0) , F2(v5 ; 0).

F1?(3 - v5; 2) , F2? (3 + v5; 2).

Уравнение F1? F2? (x - 3 + v5) / (3 + v5 - 3 + v5) = (y - 2) /(2 - 2) ; y = 2

Ответ: (3 ; 2) , действительная полуось a =1 , мнимая полуось b =2, (x - 3 + v5) / (3 + v5 - 3 + v5) = (y - 2) /(2 - 2) ; y = 2 .

16.Дана кривая y2 + 6x + 6y + 15 = 0.

16.1.Докажите , что эта кривая - гипербола .

16.2(058.РП). Найдите координаты её вершины .

16.3(2П9). Найдите значения её параметра p .

16.4(289.РП). Запишите уравнение её оси симметрии .

16.5.Постройте данную параболу .

Решение :

Выделим полный квадрат при переменной y

(y2 + 6y + 9) + 6x + 6 = 0

(y + 3)2 = - 6(x + 1) .

Положим y1 = y + 3 , x1 = x + 1 .

Получим

y12 = ±6x1 .

Это уравнение параболы вида y2 = 2px , где p = -3 .

Данная кривая является гиперболой .

Так как p<0 , то ветви параболы в отрицательную сторону. Координаты вершины параболы y + 3 = 0 x + 1 = 0

y = -3 x = -1

(-1 ; -3) - вершина параболы .

Уравнение оси симметрии y = -3.

Ответ : (-1 ; -3) - вершина параболы , p = -3 , уравнение оси симметрии y = -3 .


Подобные документы

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция [45,4 K], добавлен 02.06.2008

  • Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

    контрольная работа [63,2 K], добавлен 24.10.2010

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

  • Решение систем линейных уравнений методами Крамера и Гауса. Граф состояний марковской системы. Составление уравнений Колмогорова. Предельные вероятности состояний системы. Матричный метод, матрица треугольная, матрица квадратная и решение системы.

    контрольная работа [84,5 K], добавлен 20.07.2010

  • Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.

    реферат [111,8 K], добавлен 09.06.2011

  • Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.

    презентация [184,4 K], добавлен 21.09.2013

  • Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.

    контрольная работа [97,3 K], добавлен 24.05.2009

  • Решение системы линейных уравнений методами Крамера, обратной матрицы и Гаусса. Расчет длин и скалярного произведения векторов. Уравнение прямой, проходящей через точку параллельно направляющему вектору. Расчет производных функций одной и двух переменных.

    контрольная работа [984,9 K], добавлен 19.04.2013

  • Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.

    контрольная работа [126,9 K], добавлен 20.04.2016

  • Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.

    контрольная работа [35,1 K], добавлен 24.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.