Решение систем линейных уравнений
Решение систем линейных уравнений методами Крамера и Гауса. Граф состояний марковской системы. Составление уравнений Колмогорова. Предельные вероятности состояний системы. Матричный метод, матрица треугольная, матрица квадратная и решение системы.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 20.07.2010 |
Размер файла | 84,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ
КЕМЕРОВСКИЙ ИНСТИТУТ (ФИЛИАЛ)
ФАКУЛЬТЕТ ЗАОЧНОГО ОБУЧЕНИЯ
Кафедра высшей и прикладной математики
Контрольная работа по дисциплине
«Математика»
Выполнил:
студент группы ПИс-061
(сокращенная форма обучения)
Жилкова Ольга Анатольевна
г. Кемерово 2007 г.
Содержание
Задача №1
Задача №2
Задача №3
Задача №1
Условия задачи
Решить систему линейных уравнений:
а) методом Крамера,
б) методом Гаусса,
в) матричным методом.
Решение
1) Методом Крамера:
а) Первое условие - матрица квадратная
б)
в) Второе условие .
= = - 3 - 1 - 1 - 1 - 3 + 2 = - 8
Вывод: СЛУ можно решить методом Крамера.
= - 18 - 1 - 1 + 12 = - 8
= 0 - 6 - 1 - 18 + 1 = - 24
= 1 - 12 - 6 + 1 = - 16
; ; ;
; ; ;
Проверка:
Ответ: x = 1; y = 3; z = 2.
2) Метод Гаусса.
Матрица треугольная. Следовательно, существует единственное решение.
z = 2
y = - 5 + 8
y = 3
x + 3 + 2 = 6
x = 1
Ответ: x = 1; y = 3; z = 2.
3) Матричный метод.
а) Первое условие - матрица квадратная;
б) Второе условие .
в) Вывод: решение есть и оно единственное.
Проверка:
Ответ: x = 1, y = 3, z = 2.
Задача №2
Условия задачи
В ящике 18 одинаковых бутылок пива без этикеток. Известно, что треть из них "Жигулевское". Случайным образом выбирают 3 бутылки. Вычислите вероятность того, что среди них: а) только пиво сорта "Жигулевское"; б) ровно одна бутылка этого сорта.
Решение задачи
Вариант 1
1) m - число благоприятствующих исходов;
2) n - общее число всех возможных исходов;
;
;
;
Ответ: вероятность того, что среди выбранных бутылок будут только бутылки пива сорта "Жигулевское", равна 0,025.
Вариант 2
1) ;
2) ;
3)
Ответ: вероятность того, что среди выбранных бутылок будет одна бутылка пива сорта "Жигулевское", равна 0,485.
Задача №3
Условие задачи
Дан граф состояний марковской системы. Найти предельные вероятности состояний системы.
1) Составление уравнений Колмогорова:
Решение системы линейных уравнений:
2) Решение СЛУ методом Гаусса:
Есть единственное решение, т. к. матрица треугольная.
Ответ: предельные вероятности состояний системы равны , , .
Подобные документы
Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция [24,2 K], добавлен 14.12.2010Примеры операций над матрицами. Ранг матрицы. Обратная матрица. Системы линейных уравнений. Метод Гаусса для решения систем линейных уравнений, две его составляющие: прямой и обратный ходы. Решение системы по формулам Крамера. Построение параболы.
контрольная работа [33,2 K], добавлен 05.02.2009Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа [63,2 K], добавлен 24.10.2010Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача [26,8 K], добавлен 29.05.2012Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.
контрольная работа [97,3 K], добавлен 24.05.2009Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.
контрольная работа [200,4 K], добавлен 17.12.2010Решение системы уравнений по методу Крамера, Гаусса и с помощью обратной матрицы. Общее число возможных элементарных исходов для заданных испытаний. Расчет математического ожидания, дисперсии и среднего квадратического отклонения, график функции.
контрольная работа [210,4 K], добавлен 23.04.2013Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.
контрольная работа [69,7 K], добавлен 26.02.2012Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.
контрольная работа [567,1 K], добавлен 21.05.2013Нахождение проекции точки на прямую, проходящую через заданные точки. Изучение формул Крамера для решения систем линейных уравнений. Определение точки пересечения перпендикуляра и исходной прямой. Исследование и решение матричной системы методом Гаусса.
контрольная работа [98,6 K], добавлен 19.04.2015