Анализ метода знакопостоянных функций Ляпунова

Синтез вариационного исчисления и метода функций Ляпунова в основе принципа динамического программирования. Метод знакопостоянных функций Ляпунова в решении задач о стабилизации и синтезе управления для нелинейной и автономной управляемых систем.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 17.06.2011
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

  • Введение
  • Метод знакопостоянных функций Ляпунова в задачах о стабилизации и синтезе управления для нелинейной управляемой системы
  • § 1. Постановка задачи о синтезе управления
  • § 2. Задачи синтеза управления для автономной управляемой системы
  • Список литературы

Введение

Середина 20-го века ознаменовалась интенсивным развитием математической теории управления. Это развитие было связано прежде всего с необходимостью решения задач управления механическими объектами, а в дальнейшем, также и с исследованием технологических и экономических процессов. Одной из центральных задач теории и практики управления остается проблема синтеза законов управления механическими системами. Основы решения этой проблемы заложены в работах Н.Н. Красовского, В.В. Румянцева, А.М. Летова, Д.Е. Охоцимского, Ф.Л. Черноусько, Е.С. Пятницкого и их научных школ.

Принцип динамического программирования представляет собой синтез вариационного исчисления и метода функций Ляпунова [14, 24, 26]. На этом базируются основные методы стабилизации движений управляемых систем, в том числе механических, на бесконечном интервале времени [2, 4, 22, 23, 25, 32, 33, 37] и синтеза управления на конечном отрезке времени [8, 9, 16-20] с применением функции Ляпунова.

В [25] показано применение функции Ляпунова со знакоотрицательной производной в задаче синтеза управления в системе, асимптотически устойчивой на бесконечном интервале относительно множества, на котором управление вырождается. Развитие этого подхода с использованием функции Ляпунова, имеющей знакопостоянную производную, проведено в работах [10-12].

В работах В.И. Коробова и его учеников [8, 9, 16-20] представлены результаты целенаправленных исследований по синтезу управления на конечном отрезке с помощью функции управляемости, удовлетворяющей по существу условиям классической теоремы Ляпунова об асимптотической устойчивости [26, 35].

Применение теории моделирования [24, 27, 36, 38] позволяет проанализировать подходы и алгоритмы решения задач об управлении механическими системами с точки зрения их эффективности по затратам управления, времен переходного процесса и динамики. Подробно этим вопросам уделено внимание в работах [1, 6, 15, 21, 28, 29, 31, 39].

До настоящего времени решение задач о стабилизации и управлении движением нелинейных систем с применением функций Ляпунова основывалось на знакоопределенных функциях [7, 13, 20, 22, 25, 30, 31]. В работах [3, 4, 5, 34] показана эффективность использования в этих задачах знакопостоянных функций. Развитие данного направления рассматривается в моей курсовой работе.

Метод знакопостоянных функций Ляпунова в задачах о стабилизации и синтезе управления для нелинейной управляемой системы

§ 1. Постановка задачи о синтезе управления

Пусть движение некоторой управляемой системы описывается системой дифференциальных уравнений

= , (1.1)

где Є n есть вектор-функция переменных, являющихся некоторыми контролируемыми параметрами, связанными с движением управляемого объекта, а Є Rm есть вектор-функция управления, приложенного к объекту.

Пусть = есть некоторое частное движение системы, порождаемое управлением .

Таким образом, имеем

(1.2)

Примем за невозмущенное движение, а за возмущенное движение будем считать движение, которое также описывается уравнениями (1.1), но уже при значениях , отличных, вообще говоря, от воздействия .

Введем переменные

(1.3)

где - возмущения параметров движения, - отклонения управляющих воздействий от порождающего управления .

Из соотношений (1.1), (1.2) и определения (1.3) получаем, что возмущенное движение при отклонении , принимаемом за дополнительное управление, описывается системой уравнений

(1.4)

где

Согласно составленному переходу, имеем соотношения

(1.5)

Будем предполагать, что правая часть системы (1.4), вектор-функция определена и непрерывна для всех, за исключением, быть может, точки и некоторого заданного множества, где Г =, есть норма в n-мерном действительном пространстве Rn, задаваемая в соответствии с конкретной постановкой задачи, Rm есть m-мерное действительное пространство с соответствующей нормой

Также будем полагать, что дополнительное управление u, целью которого является приведение системы в движение по закону , или по закону х (t) ? 0 системы (1.4), формируется по цепи обратной связи с измерением текущих значений параметров х, т.е. в виде зависимости В соответствии с (1.3) и (1.5) следует принять, что желательно, чтобы искомое управление удовлетворяло условиям (1.6).

знакопостоянная функция ляпунов управляемая

Пусть U Rm есть класс управлений которые могут быть построены на основе обратной связи, определенных и непрерывных в области, за исключением, быть может, точки x = 0 и некоторого заданного множества.

Допустим, что для каждого соответствующие движения для каждой точки при являются единственными.

Введем следующие обозначения: - управляемое движение, удовлетворяющее начальному условию и порождаемое управлением .

В работе [33] дана следующая постановка задачи синтеза управления для системы (1.4) на конечном отрезке времени.

Определение 1.1 Задача синтеза управления на конечном отрезке времени состоит в нахождении управления такого, чтобы движение системы (1.4), начинающееся в произвольной точке из некоторой окрестности х = 0 в любой начальный момент времени t0, попадала в конечный момент времени, где , в заданную точку х = 0.

При этом синтез будем называть устойчивым, если при решающем поставленную задачу, для любого, и для любого _ > 0 существует д > 0, такое, что , если и .

Для решения поставленной задачи в [33] применен метод функций Ляпунова. Доказана следующая теорема.

Теорема 1.1 [33] Рассмотрим управляемый процесс (1.4). Будем предполагать, что вектор-функция непрерывна по совокупности переменных и в области

удовлетворяет условию Липшица

Пусть существует в замкнутой области

функция , удовлетворяющая условиям:

1) при и для любого;

2) непрерывна всюду и непрерывно дифференцируема всюду, за исключением, быть может, точек вида (t, 0) при ;

3) существует с > 0, такое, что множество ограничено и при всех ;

4) существует функция при , такая, что справедливо неравенство

при некоторых > 0 и > 0, причем в области удовлетворяет условию Липшица

5) справедливо неравенство

Тогда движение системы (1.4), начинающееся в произвольной точке в начальный момент оканчивается в точке х = 0 в некоторый момент времени , где .

Замечание 1.1 [33] Если = +, то функция Ляпунова обеспечивает асимптотическую устойчивость нулевого решения системы (1.4).

Проведем дальнейшее развитие результатов работы [33]. Поставим задачи равномерного синтеза и синтеза управления равномерного по на конечном отрезке.

Определение 1.2 Задача равномерного синтеза состоит в нахождении управления , такого, что существуют число и число , такие, что любое движение, начинающееся в произвольной точке , в любой начальный момент времени , попадает в заданную точку при некотором

Определение 1.3.3адача синтеза управления равномерного по состоит в нахождении управления , такого, что для любого найдутся число и число , такие, что любое движение, начинающееся в точке в начальный момент времени , попадает в заданную точку х = 0 при некотором По отношению к задаче синтеза управления можно поставить задачу о выборе управляющего воздействия с точки зрения наилучшего качества переходного процесса, состоящего в достижении минимума функционала

где щ - некоторая непрерывная неотрицательная скалярная функция переменных , характеризующая качество переходного процесса, число не задано.

Выбор в конкретной прикладной задаче проводится с учетом особенностей ее постановки, ограничения ресурсов управления, требования к оценке переходного процесса и возможностей формы или способа решения задачи.

Пусть есть движение, порождаемое управляющим воздей - ствием а - движение, порождаемое управляющим воздействием .

Используя введенные выше обозначения, проведем постановку задачи оптимального синтеза.

Определение 1.4 Задача оптимального синтеза состоит в нахождении управляющего воздйствия , решающего задачу синтеза управления на конечном отрезке и такого, что по сравнению с любыми другими управляющими воздействиями , решающими эту задачу, для всех выполняется неравенство

? ,

при условиях

3амечание 1.2 Область в определении 1.4 принята независимой от . Возможны и другие варианты постановки задачи об оптимальном синтезе. Например, с зависимостью от , т.е. когда

Определение 1.5 Задача равномерного оптимального синтеза соcтоит в нахождении управляющего воздействия , решающего задачу равномерного синтеза управления на конечном отрезке, и оптимального по сравнению с любыми другими управляющими воздействиями , решающими эту задачу.

Соответственно определению 1.3 можно ввести задачу oптимального синтеза равномерного по .

Будем рассматривать также задачи о стабилизации и равномерной стабилизации в следующей классической форме из [60].

Определение 1.6. [60] 3адача о стабилизации состоит в нахождении управляющего воздействия в виде вектор-функции такой, чтобы невозмущенное движение х = 0 было бы асимптотически устойчивым в силу уравнений (1.4) при .

Определение 1.7 [60] Задача о равномерной стабилизации состоит в нахождении управляющего воздействия в виде вектор-функции такой, чтобы невозмущенное движение х = 0 было бы равномерно асимптотически устойчивым в силу уравнений (1.4) при , с некоторой областью равномерного движения .

§ 2. Задачи синтеза управления для автономной управляемой системы

Пусть возмущенное движение управляемой системы описывается уравнениями

(2.1)

где - n-мерный фазовый вектор, - m-мерный вектор управления, - вектор-функция.

Пусть есть класс управляющих воздействий , которые могут быть построены на основе обратной связи и удовлетворяют условиям Так как задача синтеза рассматривается для автономной системы, то за начальный момент времени можно принять , а ее решения определить в виде .

Допустим, что , есть некоторое выбранное управ - ление, под действием которого уравнения управляемого движения (2.1) принимают вид

(2.2)

Будем полагать, что движение определено и единственно при t 0 для каждой точки .

Пусть , есть скалярная функция, непрерывно дифференцируемая в области Г, за исключением, может быть, точки х = 0 и множества

В точках можно определить производную в силу системы (2.2)

Введем класс функций типа Хана [94], , если есть непрерывная, строго монотонно возрастающая функция со значением . Определим подкласс , такой, что если , то при > 0 выполняется неравенство

,

т.е. интеграл сходится.

Проиллюстрируем методику решения задачи 1.2 в следующей теореме.

Теорема 2.1 Пусть для системы (2.2) можно найти функцию Ляпунова и управляющее воздействие , такие, что:

1) для всех выполняется соотношение , при этом только при х = 0;

2) функция

Тогда решает задачу устойчивого синтеза управления на конечном отрезке времени.

Доказательство. Покажем, что синтез управления является устойчивым, т.е. покажем, что при для любого > 0 существует > 0, такое, что , если и , если , или .

Возьмем любое . Обозначим

Наименьшее значение достигается, так как функция непрерывна и положительна при согласно условию 1) теоремы.

В качестве выберем такое число, что

Из непрерывности функции и условия следует, что такое число обязательно найдется.

Введем функцию Условие 2) теоремы означает, что функция не возрастает вдоль ре - шений системы (2.2) при управляющем воздействии . Отсюда, при и или получим

следовательно, для всех .

Пусть движения (2.2) из области ограничены и - какое-либо движение.

Вычислим производную от функции по t в силу системы (2.2) на движении . Имеем по условию 2) теоремы

(2.3)

Из условия (2.3) следует, что монотонно убывает, и, будучи ограниченной снизу, при , где - конечное число, или

. Покажем, что имеет место первый случай, . Интегрируя неравенство (2.3) от 0 до t, получаем

(2.4)

Из сходимости интеграла в правой части неравенства следует, что t-ограничено, . Поэтому при . Переходя в неравенстве (2.4) к пределу при , получаем

(2.5)

Значит, для любой начальной точки существует время Т, , такое, что при t = Т для любого движения имеем . Так как только при х = 0, следовательно, за конечное время управление переводит точки некоторой области в точку х = 0.

Теорема доказана.

Замечание 2.1 Для автономной системы (2.2) управляющее воздействие решает задачу равномерного синтеза на конечном отрезке. Действительно, для ограниченной области функция JIяпунова имеет оценку . Поэтому в неравенстве (2.5) имеем

Проведем решение задачи синтеза управляющего воздействия на конечном интервале времени на основе применения знакопостоянных функций Ляпунова.

Теорема 2.2 Предположим, что можно найти функцию Jlяпунова и управление , такие, что выполнены условия:

1) производная функции при в силу системы (2.2)

2) точка х = 0 системы (2.2) асимптотически устойчива относительно множества

Тогда х = 0 системы (2.2) асимптотически устойчиво, а возмущенное движение попадает на множество за конечный промежуток времени.

Если же вместо условия 2) выполнено условие

2') движение, начинающееся на множестве, попадает в точку х = 0 за конечный отрезок времени.

Тогда решает задачу устойчивого синтеза управления на конечном отрезке времени.

Доказательство. Из условий 1) и 2) теоремы следует, что решение х = 0 системы (2.2) асимптотически устойчиво [17].

Пусть - область притяжения, - движение. По условию 2) на этом движении для функции имеем

(2.6)

Отсюда, аналогично доказательству теоремы 2.1, получаем, что при и имеет место оценка

3начит, существует время , такое, что при любое выбранное движение попадает на множество

Допустим, что вместо условия 2) выполняется условие 2') теоремы.

Пусть есть точка, в которую попадает движение в момент Соответствующее движение попадает в точку х = 0 при некотором согласно условию 2') теоремы. Так как

за время движение из точки попадает в точку х = 0.

Теорема доказана.

Рассмотрим задачу об оптимальном синтезе управления системы (2.1) с минимизируемым функционалом

(2.7)

где - непрерывная неотрицательная функция.

Введем выражение

Имеет место следующая теорема об оптимальном синтезе.

Теорема 2.3 Предположим, что существуют функция и управляющее воздействие , , такие, что выполнено условие 1) теоремы 2.1, а также:

2) выполнено неравенство

3) для всех выполняется соотношение

4) для любого , в области Г справедливо неравенство

Тогда решает задачу оптимального синтеза.

Доказательство. Для производной функции в силу системы (2.2) из условий 2) и 3) теоремы находим

(2.8)

Значит, по теореме 2.1, управляющее воздействие решает задачу устойчивого синтеза управления на конечном отрезке времени.

Покажем, что управляющее воздействие доставляет минимум функционалу (2.7) по сравнению с другими воздействиями, решающими эту задачу.

Итак, управление решает задачу устойчивого синтеза управления на конечном отрезке. Значит, в конечный момент времени движение системы (2.2) для любых попадает в точку х = 0. Следовательно,

Для каждого движения при управляющем воздействии с начальной точкой из условия 3) теоремы следует, что имеет место соотношение

Пусть есть любое другое управляющее воздействие, такое, что, порождаемое им управляемое движение с начальной точкой попадает в точку х = 0 при . Значит, . Так как , то . Из условия 4) теоремы будем иметь

(2.9)

Тем самым теорема доказана.

Теорема 2.4 Результат теоремы 2.3 сохраняется, если можно найти функцию JIяпунова и управляющее воздействие , такие, что в области выполнены условия 2),

3) и 4) теоремы 2.3, а также:

1) движения системы (2.2) из некоторой области ограничены областью

5) движения, начинающиеся на множестве попадают в точку х = 0 за конечный отрезок времени.

Доказательство. Пусть - какое-либо движение системы (2.2) при управляющем воздействии .

Если , тогда соответствующее движение попадает в точку х = 0 при некотором согласно условию 5) теоремы. При этом из определения функции теоремы следует, что на этом движении , т.е. движение при .3начение функционала на этом движении, так как в силу .

Если , тогда по условию 1) теоремы соответствующее движение ограничено при всех , и на этом решении для функции согласно условию 2) теоремы имеем

Отсюда, аналогично доказательству теоремы 2.1, получаем, что при и имеет место оценка

Для любого другого , решающего задачу синтеза, как и в теореме 2.3, найдем, что (см. неравенство (2.9)).

Тем самым теорема доказана.

Список литературы

1. Анализ и оптимальный синтез на ЭВМ систем управления // Под. ред.А. А. Воронова и И.А. Орурка. М.: Наука. 1984.412с.

2. Андреев А.С., Безгласный С.П. О стабилизации управляемых систем с гарантированной оценкой качества управления // ПММ. 1997. Т.61. Вып.1. С.44-51.

3. Андреев А.С., Бойкова Т.А. Знакопостоянные фукции Ляпунова в задачах об устойчивости // Механика твердого тела. 2002. Вып.32 С.109-116.

4. Андреев А.С., Ким Е.Б. Об оптимальной стабилизации установившегося движения управляемой системы // Механика твердого тела. ИПМН НАН Украины (Донецк). 2004. Т.34. С.119-126.

5. Андреев А.С., Румянцев В.В. О стабилизации движения нестационарной управляемой системы // Автоматика и телемеханика. 2007. №8. С.18-31.

6. Анкилов А.В., Вельмисов П.А. Устойчивость решений интегродифференциального уравнения в частных производных // Журнал "Труды Средневолжского математического общества". Т.7. №1. Саранск. 2005. С.138-145.

7. Афанасьев В.Н., Колмановский В.Б., Носов В.Р. Математическая теория конструирования систем управления. М.: Высшая школа. 2003.615с.

8. Бессонов Г.А., Коробов В.И., Скляр Г.М. Задача устойчивого синтеза ограниченных управлений для некоторого класса нестационарных систем. // ПММ. Т.52. Вып.1.1988.

9. Бессонов Г.А., Коробова Е.В. Решение задачи позиционного управления для некоторых классов нелинейных систем // Вестник Харьковского университета. 1991. №361: Прикладная математика и механика. С.27-33.

10. Богданов А.Ю. Синтез асимптотически устойчивых непрерывных нестационарных систем управления // Ученые записки УлГУ. Сер. "Фундаментальные проблемы математики и механики". Ульяновск: УлГУ. 2000. Т.8. Вып.1. С.31-38.

Размещено на Allbest.ru


Подобные документы

  • Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.

    дипломная работа [543,4 K], добавлен 29.01.2010

  • Особенности применения функций Ляпунова для исследования устойчивости различных дифференциальных уравнений и систем. Алгоритм и листинг программы определения устойчивости матрицы на основе использования метода Раусса-Гурвица в среде моделирования Matlab.

    реферат [403,7 K], добавлен 23.10.2014

  • Система Ляпунова - случай одной степени свободы. Необходимые и достаточные условия существования периодических решений. Применение алгоритма Ляпунова для построения приближенного периодического решения задачи Коши для системы дифференциальных уравнений.

    курсовая работа [243,8 K], добавлен 11.05.2012

  • Общая характеристика сходимости последовательностей случайных величин и вероятностных распределений. Значение метода характеристических функций в теории вероятностей. Методика решения задач о типах сходимости. Анализ теоремы Ляпунова и Линдеберга.

    курсовая работа [2,6 M], добавлен 22.07.2011

  • Понятие и поиск спектра как множества всех собственных характеристических показателей решений дифференциальной системы. Характеристические показатели Ляпунова заданной линейной стационарной системы. Теорема Ляпунова о нормальности фундаментальной системы.

    курсовая работа [97,2 K], добавлен 21.08.2009

  • Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.

    лабораторная работа [533,9 K], добавлен 26.04.2014

  • Основные формулы, используемые в исследовании. Определение стохастической устойчивости и структура соответствующих уравнений. Применение второго метода Ляпунова. Скалярные уравнения n-го порядка. Анализ устойчивости по вероятности движений спутника.

    курсовая работа [235,6 K], добавлен 21.02.2016

  • Понятие верхнего центрального показателя системы, характеристические показатели Ляпунова. Семейство кусочно-непрерывных и равномерно ограниченных функций, способы их решения. Соотношения между старшим и верхним центральным показателями линейных систем.

    дипломная работа [277,5 K], добавлен 07.09.2009

  • Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.

    курсовая работа [1,3 M], добавлен 08.04.2015

  • Метод Зейделя как модификация метода простой итерации. Особенности решения систем линейных алгебраических уравнений. Анализ способов построения графика функций. Основное назначение формул Симпсона. Характеристика модифицированного метода Эйлера.

    контрольная работа [191,3 K], добавлен 30.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.