Интегральное и дифференциальное исчисление. Приложения интегралов, ряд Фурье

Рассмотрение задач с двойными и тройными интегралами, применение к ним геометрического и симплекс методов решения; описание теоретической и практической части. Разложение функции в ряд Фурье по синусам и определение наибольшего и наименьшего значения.

Рубрика Математика
Предмет
Вид курсовая работа
Язык русский
Прислал(а) milenkiy
Дата добавления 28.04.2011
Размер файла 185,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Нахождение наибольшего и наименьшего значения (экстремумы) функции в замкнутой ограниченной области. Геометрический и симплексный метод составления плана выпуска продукции, разложение в ряд Фурье по синусам непериодической функции, её график и сумма.

    курсовая работа [282,7 K], добавлен 25.04.2011

  • Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.

    презентация [73,1 K], добавлен 18.09.2013

  • Векторные пространства, скалярное произведение и норма функций, ортогональные системы функций, равенства и тригонометрический ряд Фурье. Сходимость интеграла Фурье, основные сведения теории преобразования. Операционное исчисление, преобразование Лапласа.

    учебное пособие [1,2 M], добавлен 23.12.2009

  • Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).

    презентация [30,4 K], добавлен 18.09.2013

  • Задачи оптимального управления и ее разновидности. Вычислительные аспекты динамического программирования. Дифференциальное и интегральное исчисление в образах: функции, последовательности, ряды. Транспортная задача, модель-Леонтьева, задачи на повторение.

    курсовая работа [1,5 M], добавлен 20.06.2012

  • Интеграл Фурье в комплексной форме. Формулировка теоремы о сходимости интеграла для кусочно-гладких и абсолютно интегрируемых на числовой прямой функции. Примеры нахождения преобразования Фурье, сверстка и преобразование, спектр, некоторые приложения.

    курсовая работа [231,5 K], добавлен 27.08.2012

  • Правило нахождения точек абсолютного или глобального экстремума дифференцируемой в ограниченной области функции. Составление и решение системы уравнений, определение всех критических точек функции, сравнение наибольшего и наименьшего ее значения.

    практическая работа [62,7 K], добавлен 26.04.2010

  • Главные особенности вычисления преобразования Фурье, приложения и методы использования их на практике. Решение сложных уравнений физики, описывающих динамические процессы, которые возникают под воздействием электрической, тепловой или световой энергии.

    контрольная работа [151,0 K], добавлен 14.12.2013

  • Общее определение коэффициентов по методу Эйлера-Фурье. Ортогональные системы функций. Интеграл Дирихле, принцип локализации. Случай непериодической функции, произвольного промежутка, четных и нечетных функций. Примеры разложения функций в ряд Фурье.

    курсовая работа [296,3 K], добавлен 12.12.2010

  • Полное исследование функции с помощью производных, построение графика функции, нахождение ее наибольшего и наименьшего значения на отрезке. Методика вычисления неопределенных и определенных интегралов. Нахождение общего решения дифференциального уравнения

    контрольная работа [133,4 K], добавлен 26.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.