Вычисление наибольшего, наименьшего значения функции в ограниченной области
Правило нахождения точек абсолютного или глобального экстремума дифференцируемой в ограниченной области функции. Составление и решение системы уравнений, определение всех критических точек функции, сравнение наибольшего и наименьшего ее значения.
Рубрика | Математика |
Вид | практическая работа |
Язык | русский |
Дата добавления | 26.04.2010 |
Размер файла | 62,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Практическая работа
На тему: «Вычисление наибольшего, наименьшего значения функции в ограниченной области»
Цель
1. Ознакомление и приобретение навыков вычисления наибольшего, наибольшего значения функции в ограниченной области.
Основные вопросы:
1.Наибольшее и наименьшее значение функции.
2.Ограниченная область.
3.Равномерно непрерывная функция.
Если функция f(x, y, …) определена и непрерывна в замкнутой и ограниченной области D, то в этой области найдется, по крайней мере, одна точка
N(x0, y0, …), такая, что для остальных точек верно неравенство
f(x0, y0, …) ? f(x, y, …)
а также точка N1(x01, y01, …), такая, что для всех остальных точек верно неравенство
f(x01, y01, …) ? f(x, y, …)
тогда f(x0, y0, …) = M - наибольшее значение функции, а f(x01, y01, …) = m - наименьшее значение функции f(x, y, …) в области D.
Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.
Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m - соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m I [m, M] существует точка
N0(x0, y0, …) такая, что f(x0, y0, …) = m.
Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.
Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство
Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х1, y1) и (х2, у2) области, находящихся на расстоянии, меньшем D, выполнено неравенство
Точки, в которых функция принимает наибольшее или наименьшее значения в ограниченной замкнутой области, называют также точками абсолютного или глобального экстремума. Если наибольшее или наименьшее значения достигаются во внутренних точках области, то это точки локального экстремума функции z = f ( x , y ) . Таким образом точки, в которых функция принимает наибольшее или наименьшее значения являются либо локальными экстремумами, либо граничными точками области. Следовательно, чтобы найти наибольшее и наименьшее значения функции z = f ( x , y ) в ограниченной замкнутой области D, следует вычислить значение функции в критических точках области D, а также наибольшее и наименьшее значения функции на границе. Если граница задана уравнением ? ( x , y ) = 0 , то задача отыскания наибольшего и наименьшего значений функции на границе области D сводится к отысканию наибольшего и наименьшего значений (абсолютного экстремума) функции одной переменной, так как уравнение границы области D - ? ( x , y ) = 0 связывает переменные x и y между собой. Значит, если разрешить уравнение ? ( x , y ) = 0 относительно одной из переменных или параметрические уравнения границы области D и подставить их в уравнение z = f ( x , y ) , то придем к задаче нахождения наибольшего и наименьшего значений функции одной переменной. Если уравнение ? ( x , y ) = 0 невозможно разрешить относительно одной из переменных или невозможно найти параметрическое задание границы, то задача сводится к отысканию условного экстремума.
Правило нахождения наибольшего и наименьшего значений дифференцируемой в области D функции z = ?(х;у) состоит в следующем:
1. Найти все критические точки функции, принадлежащие D , и вычислить значения функции в них;
2. Найти наибольшее и наименьшее значения функции z = ?(х;у) на границах области;
3. Сравнить все найденные значения функции и выбрать из них наибольшее М и наименьшее.
Задачи:
1. Найти наибольшее и наименьшее значения функции z=х2у + ху2 + ху в замкнутой области, ограниченной линиями: у = 1/x, х = 1, х = 2, у = -1,5
Решение: Здесь z'x=2ху+у2+у, z'y=х2+2ху+х.
Находим все критические точки:
Решением системы являются точки (0;0), (-1;0), (0; -1),(-1/3;-1/3). Ни одна из найденных точек не принадлежит области D .
2. Исследуем функцию z на границе области, состоящей из участков АВ, ВС, СЕ и ЕА
На участке АВ:
Значения функции z(-1) = -1,
На участке ВС:
Значения функции z(1) = 3, z(2) = 3,5.
На участке СЕ:
z'y=4у+6, 4у+6=0, у=-3/2.
Значения функции
На участке АЕ:
Значения функции z(1) = -3/4,z(2) = -4,5.
3. Найти наибольшее M и наименьшее m значения функции z = 4x2-2xy+y2-8x в замкнутой области D, ограниченной: x = 0, y = 0, 4x+3y=12 .
Решение
1. Построим область D (рис. 1.5) на плоскости Оху.
Угловые точки: О (0; 0), В (0; 4), А (3; 0).
Граница Г области D состоит из трёх частей:
Примеры:
1. Найти наибольшее и наименьшее значения функции z = х2у + ху2 + ху в замкнутой области, ограниченной линиями: х = 1, х = 2, у = 1,5
2. Найти наибольшее и наименьшее значения функции z = 2 x 3 ? 6 xy + 3 y 2 в замкнутой области D, ограниченной осью OY, прямой y = 2 и параболой y = x 2 при x ? 0 .
3. Найти наибольшее M и наименьшее m значения функции z = 4x2-2xy+y2-8x в замкнутой области D, ограниченной: x = 0, y = 0, 4x+3y=12 .
4. Найти наибольшее и наименьшее значения функции z=х2у + ху2 + ху в замкнутой области, ограниченной линиями: у = 1/x, х = 1, х = 2, у = -1,5
5. Найти наибольшее и наименьшее значения функции в треугольнике, ограниченном прямыми , , .
Подобные документы
Определение минимальной и максимальной точек для функции, имеющей на отрезке [a; b] конечное число критических точек. Ознакомление с примерами нахождения наибольшего и наименьшего значений квадратической, кубической, логарифмической и иных функций.
презентация [355,9 K], добавлен 20.12.2011Определение наименьшего и наибольшего значения функции в ограниченной области и ее градиента; общего интеграла и общего и частного решения дифференциального уравнения. Исследование ряда на абсолютную сходимость с применением признаков Коши и Даламбера.
контрольная работа [107,2 K], добавлен 25.11.2013Нахождение наибольшего и наименьшего значения (экстремумы) функции в замкнутой ограниченной области. Геометрический и симплексный метод составления плана выпуска продукции, разложение в ряд Фурье по синусам непериодической функции, её график и сумма.
курсовая работа [282,7 K], добавлен 25.04.2011Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.
контрольная работа [98,4 K], добавлен 07.02.2015Нахождение пределов, не используя правило Лопиталя. Исследование функции на непрерывность, построение ее графика. Определение типа точки разрыва. Поиск производной функции. Поиск наибольшего и наименьшего значения функции на указанном ее отрезке.
контрольная работа [1,1 M], добавлен 26.03.2014Расчет частных производных первого порядка. Поиск и построение области определения функции. Расчет полного дифференциала. Исследование функции на экстремум. Поиск наибольшего и наименьшего значения функции в замкнутой области. Производные второго порядка.
контрольная работа [204,5 K], добавлен 06.05.2012Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.
реферат [162,8 K], добавлен 20.05.2019Полное исследование функции с помощью производных, построение графика функции, нахождение ее наибольшего и наименьшего значения на отрезке. Методика вычисления неопределенных и определенных интегралов. Нахождение общего решения дифференциального уравнения
контрольная работа [133,4 K], добавлен 26.02.2012Рассмотрение задач с двойными и тройными интегралами, применение к ним геометрического и симплекс методов решения; описание теоретической и практической части. Разложение функции в ряд Фурье по синусам и определение наибольшего и наименьшего значения.
курсовая работа [185,1 K], добавлен 28.04.2011Определение периметра треугольника, наименьшего и наибольшего значений функции. Вычисление средней температуры. Проведение вычислений логарифмов. Нахождение угла между прямой и плоскостью. Вычисление объема конуса. Коэффициент теплового расширения.
контрольная работа [15,5 K], добавлен 27.12.2013