Избранные теоремы геометрии тетраэдра
Особенности видов тетраэдров и теоремы о них, их доказательства и примеры решения задач. Сравнительная характеристика изложения темы "тетраэдр" в школьных учебниках. Тестирование уровня развития пространственного мышления у учеников средней школы.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 19.06.2011 |
Размер файла | 910,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
BK и CN - высоты граней ABC и BCD. Проведем FP || CN и FL || BK. ; . Найдем LP. DO - высота правильного тетраэдра, DO = , Q - проекция P на плоскость ABC, . ,
;
.
Запишем теорему косинусов для ДLFP:
; ;
.
Так как угол между прямыми по определению острый
.
Глава II. Тетраэдр в курсе математики средней школы
§1. Сравнительная характеристика изложения темы «тетраэдр» в школьных учебниках
В школьном курсе геометрии на изучение основ темы «Тетраэдр» отводится достаточно много времени. Методических проблем проведения этой темы практически не возникает, так как учащиеся знают, что такое пирамида (в т.ч. и треугольная), как из пропедевтических курсов прежних лет обучения математики, так из жизненного опыта. Правильный тетраэдр ассоциируется с его плоским аналогом - правильным треугольником, а равенство сторон с равенством ребер или граней.
Однако проблемы в изучении темы для учащихся существуют, и разные учебники пытаются решить их разными способами (порядком изложения теоретического материала, уровнем сложности задач и т.п.). Дадим краткую характеристику распространенных учебников геометрии в аспекте изучения тетраэдра.
Изложение темы «Тетраэдр» в учебнике «Геометрия» для 10-11 классов Атанасяна Л. С. и др.
В базовом учебнике «Геометрия» для 10-11 классов средней школы Атанасяна Л. С. и др. информацию о тетраэдре можно найти в 7 параграфах (12, 14, 28, 29, 32, 33, 69).
Авторы учебника определяют тетраэдр как поверхность, составленную из четырёх треугольников. Из теоретической базы учебника для 10 класса можно почерпнуть знания о гранях, рёбрах и вершинах тетраэдра, о построении сечений тетраэдра плоскостью, вычислении площади полной поверхности тетраэдра, в т.ч. и усечённого (глава III, § 2 «Пирамида»).
Далее рассматриваются правильные многогранники и элементы симметрии правильных многогранников. Формула нахождения объёма пирамиды приводится в заключительной главе учебника (глава VII «Объемы тел»).
Теоретический материал учебника изложен компактно и стилистически единообразно. Некоторый теоретический материал расположен в практической части учебника (доказательства некоторых теорем производится в задачах). Практический материал учебника разделён на два уровня сложности (есть т.н. «задачи повышенной трудности», отмеченные специальным символом «*»). Кроме того, в конце учебника есть задачник с задачами высокой сложности, некоторые из которых касаются тетраэдра. Рассмотрим некоторые задачи учебника.
Решение задач.
Задача 1 (№300). В правильной треугольной пирамиде DABC точки E, F и P - середины сторон BC, AB и AD. Определите вид сечения и найдите его площадь, если сторона основания пирамиды равна a, боковое ребро равно b.
Решение.
Строим сечение плоскостью, проходящей через точки E, F, P. Проведём среднюю линию треугольника ABC, EF || AC,
EF || AC, а AC лежит в пл. DCA, значит EF || пл. DCA. Плоскость сечения пересечёт грань DCA по прямой PK.
Т.к. плоскость сечения проходит через прямую EF параллельную плоскости DCA и пересекает плоскость DCA, то линия пересечения PK параллельна прямой EF.
Построим в грани BDA отрезок FP, а в грани BDC - отрезок EK. Четырёхугольник EFOK и есть искомое сечение. EF || AC, PK || EF || AC, , , значит .
Т.к. PK || EF и PK = EF, то EFPK - параллелограмм. Таким образом, EK || EP, EP - средняя линия треугольника BCD, .
Угол между скрещивающимися прямыми DB и CA равен 90°. Докажем это. Построим высоту пирамиды DO. Точка O - центр правильного треугольника ABC. Продолжим отрезок BO до пересечения со стороной AC в точке M. В правильном треугольнике ABC: BM - высота, медиана и биссектриса, следовательно. Имеем, что , , тогда по признаку перпендикулярности прямой и плоскости , тогда .
Т.к. , PK || CA и EK || BD, то и EFPK - прямоугольник.
.
Задача 2 (№692).
Основанием пирамиды является прямоугольный треугольник с катетами a и b. Каждое её боковое ребро наклонено к плоскости основания под углом ц. Найдите объём пирамиды
Решение:
ABCD - пирамида, угол ABC - прямоугольный, AC = b, BC = a, углы DAO, DBO, DCO равны . Найдем VDABC0.
1) ?DAO=?ADC=?DBO по катету и острому углу, значит AO=OC=OB=R окружности, описанной около ?ABC. Т.к. ?ABC - прямоугольный, то .
2) Из ?DOC: ; .
3) ; ; .
Изложение темы «Тетраэдр» в учебнике «Геометрия» для 7-11 классов Погорелова А.В.
В другом базовом учебнике А.В. Погорелова и др. теоретический материал в той или иной степени касающийся темы «Тетраэдр» содержится в пунктах 176-180, 186, 192, 199, 200.
В пункте 180 “Правильные многогранники” содержится определение понятия «правильный тетраэдр» (“Тетраэдр представляет собой треугольную пирамиду, у которой все рёбра равны”), доказательство некоторых свойств и теорем о пирамиде проиллюстрировано чертежами тетраэдра. Однако в данном учебном пособии акцент на изучении фигуры не ставится, и в этом смысле его информативность (касательно тетраэдра) можно оценить как низкую. Практический же материал учебника содержит удовлетворительное количество заданий, касающихся пирамиды, в основании которой расположен треугольник (что по сути и есть тетраэдр). Приведём примеры решения некоторых задач.
Решение задач.
Задача 1 (№ 41 из пункта «Многогранники»).
Основание пирамиды -- равнобедренный треугольник, у которого основание равно 12 см, а боковая сторона -- 10 см. Боковые грани образуют с основанием равные двугранные углы, содержащие по 45°. Найдите высоту пирамиды.
Решение:
Проведем перпендикуляр SO к плоскости основания и перпендикуляры SK, SM и SN к сторонам ДABС. Тогда по теореме о трех перпендикулярах OKBC, ОМАС и ONAB.
Тогда, SKO = SMO = SNO = 45° -- как линейные углы данных двугранных углов. А следовательно, прямоугольные треугольники SKO, SMO и SNO равны по катету и острому углу. Так что OK=OM=ON, то есть точка О является центром окружности, вписанной в ДАВС.
Выразим площадь прямоугольника АВС:
(см)
С другой стороны, . Так что ; ОК=r=3 см. Так как в прямоугольном треугольнике SOK острый угол равен 45°, то ДSOK является равнобедренным и SO=OK=3(см).
Задача 2 (№ 43 из пункта «Объёмы многогранников»).
Найдите объем пирамиды, имеющий основанием треугольник, два угла которого a и в; радиус описанного круга R. Боковые ребра пирамиды наклонены к плоскости ее основания под углом г.
Решение.
Так как все боковые ребра пирамиды наклонены к плоскости основания под одним и тем же углом, то высота пирамиды O1O проходит через центр описанной около основания окружности. Так что
Далее, в прямоугольном : .
В ДАВС . Тогда согласно теореме синусов
.
Так что , , =
=.
Площадь треугольника:
.
Тогда .
Изложение темы «Тетраэдр» в учебнике «Геометрия» для 10-11 классов Александрова А.Д.
Рассмотрим учебное пособие Александрова А.Д. и др. «Геометрия: учебник для учащихся 11 кл. с углубленным изучением математики». Отдельных параграфов, посвящённых тетраэдру в этом учебнике нет, однако тема присутствует в виде фрагментов других параграфов.
Впервые тетраэдр упоминается в §21.3. В материале параграфа рассматривается теорема о триангуляции многогранника, в качестве примера выполняют триангуляцию выпуклой пирамиды. Само понятие «многогранник» в учебнике трактуется двумя способами, второе определение понятия напрямую связано с тетраэдром: «Многогранник - это фигура, являющаяся объединением конечного числа тетраэдров…». Познания, касающиеся правильной пирамиды и некоторых аспектов симметрии тетраэдра можно обнаружить в §23.
В §26.2 описано применение теоремы Эйлера («о правильных сетях») для правильных многогранников (в т.ч. для тетраэдра), а в §26.4 рассматриваются виды симметрий, характерные для этих фигур.
Формулу для нахождения объёма пирамиды авторы вводят в задаче №30.1(2), а площадь боковой поверхности пирамиды вводится в материале параграфа «Площадь поверхности конуса и цилиндра» (§32.5).
Также, в учебнике можно найти информацию о средней линии тетраэдра, центре масс (§35.5) и классе равногранных тетраэдров. Движения I и II рода демонстрируются в ходе решения задач о тетраэдрах.
Отличительная особенность учебника -- высокая научность, которую авторам удалось совместить с доступным языком и чёткой структурой изложения. Приведём примеры решения некоторых задач.
Решение задач.
Задача 1.
В данную правильную треугольную усечённую пирамиду с боковым ребром a можно поместить сферу, касающуюся всех граней, и сферу, касающуюся всех рёбер. Найдите стороны оснований пирамиды.
Решение.
Изобразим на чертеже «полную» пирамиду. Данная пирамида , -- высота «полной» пирамиды, -- ее часть до верхнего основания усеченной. Задача сводится к планиметрической, при этом не надо рисовать ни одной из данных сфер. Т.к. в усеченную пирамиду можно вписать сферу, касающуюся всех ребер, то в её боковую грань можно вписать окружность. Обозначим , (для удобства деления пополам) и для описанного четырехугольника получим, что , откуда
. (1)
Из существования вписанного шара следует, что существует полуокружность, расположенная в трапеции ( -- апофема «полной» пирамиды) так, что ее центр лежит в середине , а сама она касается остальных трёх сторон трапеции.
-- центр шара, и -- точки касания. Тогда . Выразим эти величину через и . Из : . Из : . Из трапеции : . Получаем уравнение:
.(2)
Решив систему уравнений (1) и (2), получим, что стороны оснований равны .
Задача 2.
Внутри правильного тетраэдра с ребром a расположены четыре равные сферы так, что каждая сфера касается трех других сфер и трех граней тетраэдра. Найти радиус этих сфер.
Решение.
-- данный тетраэдр, -- его высота, -- центры сфер, -- точка пересечения прямой с плоскостью . Заметим, что центры равных сфер , касающихся плоскости , удалены от нее на равные расстояния, каждое из которых равно радиусу шара (обозначием его как x). Значит плоскостии параллельны, а потому .
Далее, каждая пара шаров касается между собой, а потому расстояние между центрами равно сумме их радиусов, то есть 2x. Имеем:
. Но как высота правильного тетраэдра с ребром ; как высота правильного тетраэдра с ребром 2x; .
Осталось выразить . Заметим, что точка находится внутри трехгранного угла и удалена от его граней на расстояние , а плоские углы трехгранного угла равны . Не сложно получить то, что . Приходим к уравнению:
, откуда после упрощений получаем .
Изложение темы «Тетраэдр» в учебнике «Геометрия» для 10-11 классов Смирновой И.М.
Изложению темы «Тетраэдр» в учебнике для 10-11 классов гуманитарного профиля Смирновой И.М. посвящены следующие занятия: 18, 19, 21, 22, 28-30, 35.
После изучения теоремы о том, что «Всякий выпуклый многогранник может быть составлен из пирамид с общей вершиной, основания которых образуют поверхность многогранника» рассматривается теорема Эйлера для некоторых таких многогранников, в частности, выполнение условий теоремы рассмотрено и для треугольной пирамиды, которая, в сущности, и есть тетраэдр.
Учебник интересен тем, что в нём рассматривается топология и топологически правильные многогранники(тетраэдр, октаэдр, икосаэдр, куб, додекаэдр), чье существование обосновывается при помощи той же теоремы Эйлера.
Помимо этого в учебнике приведено определение понятия «правильная пирамида»; рассматриваются теоремы о существовании вписанной и описанной сфер тетраэдра, некоторые свойства симметрии, касающиеся тетраэдра. На заключительном занятии (35) приводится формула нахождения объёма треугольной пирамиды.
Для данного учебного пособия характерен большой объем иллюстративного и исторического материала, а также небольшой объём практического материала, обусловленный направленностью учебника. Рассмотрим также учебник Смирновой И.М. и др. для 10-11 классов естественно-научного профиля.
Изложение темы «Тетраэдр» в учебнике «Геометрия» для 10-11 классов Смирновой И.М. и др.
От предыдущего учебного пособия данное отличается компоновкой тем и уровнем сложности предлагаемых к решению задач. Отличительной особенностью изложения материала является деление его на «семестры», которых в учебнике четыре. Тетраэдр упоминается в самом первом параграфе («Введение в стереометрию») , понятие «пирамида» определяется в §3.
Как и в предыдущем учебнике практический материал дополнен заданиями с развёрткой стереометрических фигур. В материале §26 можно найти теорему о сфере, вписанной в тетраэдр. Остальной теоретический материал, касающийся тетраэдра, фактически совпадает с материалами учебника, охарактеризованного выше.
Решение задач.
Задача 1.
Найдите кратчайший путь по поверхности правильного тетраэдра ABCD соединяющий точки E и F, расположенные на высотах боковых граней в 7 см от соответствующих вершин тетраэдра. Ребро тетраэдра равно 20 см.
Решение.
Рассмотрим развертку трех граней тетраэдра. Кратчайшим путем будет отрезок, соединяющий точки E и F. Его длина равна 20 см.
Задача 2.
В основании пирамиды лежит прямоугольный треугольник, один из катетов которого равен 3 см, а прилежащий к нему острый угол равен 30 градусам. Все боковые ребра пирамиды наклонены к плоскости основания под углом в 60 градусов. Найдите объем пирамиды.
Решение.
Площадь треугольника ABC равна . Основанием высоты служит середина . Треугольник SAC -- равносторонний..
Отсюда и, следовательно, объем пирамиды равен .
Вывод.
Отличительной особенностью учебника Атанасяна Л.С. и др. является то, что изучение тетраэдра начинается достаточно рано, материал разбросан по всему курсу и представлен в различных уровнях сложности. В учебнике Погорелова А.В. материал расположен компактно, понятие «тетраэдр» как и понятия других пространственных фигур, вводится достаточно поздно (в конце 10 класса), практический материал, представленный в учебнике, небольшого объема. В учебнике Смирновой И.М. и др. теоретический материал, как и практический имеет небольшой объем, практический задания низкого уровня сложности, учебник отличается большим объём материала из истории математики. В учебнике Александрова А.Д. и др. уровень сложности материала выше, сам материал разнообразнее, множество практических заданий содержит некоторую часть теории, имеются экстремальные задачи и задачи в виде вопросов, что выгодно выделяет его на фоне остальных.
§2. Тестирование уровня развития пространственного мышления у учеников средней школы
Интеллект -- это способность к обучению или пониманию, которая присуща всем людям. Одни люди обладают ею в большей степени, другие -- в меньшей, однако у каждого человека в течение жизни эта способность сохраняется практически без изменений. Именно благодаря интеллекту мы способны правильно действовать и учиться на своих ошибках.
В психологии интеллект определяется, как способность воспринимать знания и использовать их в других, принципиально новых ситуациях. В условиях тестирования можно определить, насколько успешно адаптируется человек к необычным ситуациям. Определение уровня общего интеллектуального развития посредством теста - довольно трудная и ёмкая по времени работа, поэтому в тексте данной работы будет использоваться часть методики тестирования интеллекта, отвечающая на вопрос об уровне развития пространственного мышления. Пространственное мышление - это специфический вид мыслительной деятельности, которая имеет место в решении задач, требующих ориентации в практическом и теоретическом пространстве (как видимом, так и воображённом). В своих наиболее развитых формах это мышление образцами, в которых фиксируются пространственные свойства и отношения. Оперируя исходными образами, созданными на различной наглядной основе, мышление обеспечивает их видоизменение, трансформацию и создание новых образов, отличных от исходных.
Используемый тест («Мини-тест уровня развития пространственного мышления» из «Первого теста на коэффициент развития интеллекта» Ф. Картера, К. Рассела) универсален для всех возрастных групп и занимает малый объём времени (30 минут). Текст теста и его ключи можно найти в «Приложении №1» к диплому.
Размещено на Allbest.ru
Подобные документы
Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
статья [35,2 K], добавлен 21.05.2009Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья [16,4 K], добавлен 17.10.2009Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.
курсовая работа [967,1 K], добавлен 02.06.2013Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья [20,8 K], добавлен 29.08.2004Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.
презентация [257,4 K], добавлен 05.12.2010Ознакомление с историческими сведениями, различными трактовками определения пирамиды, характеристика ее основных элементов, сечений и видов (правильная, усеченная), нахождение площади фигуры. Изучение свойств ортоцентрического и прямоугольного тетраэдров.
презентация [355,0 K], добавлен 25.05.2010Формулировки и доказательства китайской теоремы об остатках. Доказательство с помощью метода математической индукции. Конструктивный метод доказательства. Основные алгоритмы поиска решения. Применение китайской теоремы об остатках к открытию сейфа.
курсовая работа [1,0 M], добавлен 08.01.2022Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.
творческая работа [64,8 K], добавлен 20.05.2009Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.
курсовая работа [302,7 K], добавлен 22.01.2011Понятие тетраэдра (поверхность, состоящая из четырех треугольников), рассмотрение его основных элементов (основание, боковые грани). Повторение сведений из планиметрии. Решение задачи на нахождение ребер основания тетраэдра и площади боковых граней.
презентация [902,4 K], добавлен 20.02.2011