Бутылка Клейна

Бутылка Клейна – определенная неориентируемая поверхность первого рода, поверхность, у которой нет различия между внутренней и внешней сторонами. Связь бутылки Клейна с лентой Мебиуса. Получение бутылки Клейна. Построение бесконечной серии многообразий.

Рубрика Математика
Предмет Наглядная геометрия и топология
Вид курсовая работа
Язык русский
Прислал(а) Ильдус
Дата добавления 20.12.2011
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Особенности и свойства односторонней поверхности; непрерывно зависящая от точки нормаль, свойство нормального вектора возвращаться в исходную точку с противоположным вектором. Лента Мёбиуса - односторонняя поверхность с краем, особенности бутылки Клейна.

    презентация [1,4 M], добавлен 12.02.2012

  • Обзор пяти групп аксиом, на которых зиждется планиметрия Лобачевского. Сущность модели Кэли-Клейна в высшей геометрии. Особенности доказательства теоремы косинусов, теорем о сумме углов треугольника, о четвертом признаке конгруэнтности треугольников.

    курсовая работа [629,3 K], добавлен 29.06.2013

  • Розгляд основних відмінностей геометричних систем, побудованих за ідеями Келі. Аналіз геометрії Келі-Клейна поза круговим абсолютом II. Особливості диференціальних метричних форм геометрії Рімана. Характеристика геометричних систем з афінною групою.

    дипломная работа [660,6 K], добавлен 09.09.2012

  • Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).

    реферат [319,1 K], добавлен 06.03.2009

  • Микола Іванович Лобачевський як відомий російський математик, творець неевклідової геометрії. Його дослідження у галузі геометрії. Походження неевклідової геометрії. Три моделі геометрії Лобачевського: Пуанкаре, Клейна та інтерпретація Бельтрамі.

    реферат [229,4 K], добавлен 31.03.2013

  • Поверхностный интеграл второго рода, вычисление поверхности. Теорема Остроградского-Гаусса. Дивергенция, векторное поле скоростей. Поток вектора через замкнутую поверхность, направления внешней нормали. Поверхность произвольных частей.

    реферат [354,0 K], добавлен 23.02.2011

  • Определение формы осесимметричной равновесной поверхности жидкости объема, находящейся на горизонтальной поверхности. Получение безразмерной математической модели капли. Исследование влияния на равновесную поверхность действующей на жидкость силы.

    практическая работа [693,0 K], добавлен 14.04.2013

  • Основные признаки поверхности. Эллипсоид: понятие; плоскости симметрии. Сфера как замкнутая поверхность. Параметрические уравнения тора и катеноида. Общее понятие про геликоид. Параболоид как поверхность вращения. Параметрические уравнения цилиндра.

    реферат [950,6 K], добавлен 21.11.2010

  • Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.

    контрольная работа [157,6 K], добавлен 24.01.2011

  • Лист (лента) Мёбиуса как топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом пространстве. История возникновения ленты Мёбиуса, её свойства, применение в геометрии и в повседневной жизни.

    реферат [5,1 M], добавлен 03.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.