Корни многочленов от одной переменной

Понятие многочлена и его степени. Многочлен, у которого все коэффициенты равны нулю. Многочлены от одной переменной. Равенство и значение многочленов. Операции над многочленами, основные понятия схемы Горнера. Кратные и рациональные корни многочлена.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 15.06.2010
Размер файла 90,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Итак, f (x) делится на (х-2) 2, теперь нужно выяснить, делится ли f (x) на (x-2) 3.

Для этого проверим, делится ли h (x) =x3-x2-5x+6 на х-2:

Таблица 6.

1

-1

-5

6

2

1

1

-3

0

Получим, что h (x) делится на х-2, а значит, f (x) делится на (х-2) 3, и f (x) = (x-2) 3 (x2+x-3).

Далее аналогично проверяем, делится ли f (x) на (х-2) 4, т.е. делится ли s (x) =x2+x-3 на х-2:

Таблица 7.

1

1

-3

2

1

3

3

Находим, что остаток при делении s (x) на х-2 равен 3, т.е. s (x) не делится на х-2. Значит, f (x) не делится на (х-2) 4.

Таким образом, f (x) делится на (х-2) 3, но не делится на (х-2) 4. Следовательно, число 2 является корнем кратности 3 многочлена f (x).

Обычно проверку корня на кратность выполняют в одной таблице. Для данного примера эта таблица имеет следующий вид:

Таблица 8.

1

-5

3

22

-44

-24

2

1

-3

-3

16

-12

0

2

1

-1

-5

6

0

2

1

1

-3

0

2

1

3

3

Другими словами, по схеме Горнера деление многочлена f (x) на х-2, во второй строке мы получим коэффициенты многочлена g (x). Затем эту вторую строку считаем первой строкой новой системы Горнера и выполняем деление g (x) на х-2 и т.д. продолжаем вычисления до тех нор, пока не получим остаток, отличный от нуля. В этом случае кратность корня равна числу полученных нулевых остатков. В строке, содержащей последний ненулевой остаток, находится и коэффициенты частного при делении f (x) на (x-2) 3.

Теперь, используя только что предложенную схему проверки корня на кратность, решим следующую задачу. При каких a и b многочлен f (x) =x4+2x3+ax2+ (a+b) x+2 имеет число - 2 корнем кратности 2?

Так как кратность корня - 2 должна быть равна 2, то, выполняя деление на х+2 по предложенной схеме, мы должны два раза получить остаток 0, а в третий раз - остаток, отличный от нуля. Имеем:

Таблица 9.

1

2

a

a+b

2

-2

1

0

a

-a+b

2a-2b+2

-2

1

-2

а+4

-3a+b-8

-2

1

-4

а+12

Таким образом, число - 2 является корнем кратности 2 исходного многочлена тогда и только тогда, когда

Отсюда получаем: a=-7/2, b=-5/2.

Рациональные корни многочлена

Как мы уже отмечали, одной из важнейших задач в теории многочленов является задача отыскания их корней. Для решения этой задачи можно использовать метод подбора, т.е. брать наугад число и проверять, является ли оно корнем данного многочлена.

При этом можно довольно быстро "натолкнуться" на корень, а можно и никогда его не найти. Ведь проверить все числа невозможно, так как их бесконечно много.

Другое дело, если бы нам удалось сузить область поиска, например знать, что искомые корни находятся, скажем, среди тридцати указанных чисел. А для тридцати чисел можно и проверку сделать. В связи со всем сказанным выше важным и интересным представляется такое утверждение.

Если несократимая дробь l/m (l,m - целые числа) является корнем многочлена f (x) с целыми коэффициентами, то старший коэффициент этого многочлена делится на m, а свободный член - на 1.

В самом деле, если f (x) =anxn+an-1xn-1+... +a1x+a0, an?0, где an, an-1,...,a1, a0 - целые числа, то f (l/m) =0, т.е.

аn (l/m) n+an-1 (l/m) n-1+... +a1l/m+a0=0.

Умножим обе части этого равенства на mn. Получим

anln+an-1ln-1m+... +a1lmn-1+a0mn=0.

Отсюда следует

anln=m (-an-1ln-1-... - a1lmn-2-a0mn-1).

Видим, что целое число anln делится на m. Но l/m - несократимая дробь, т.е. числа l и m взаимно просты, а тогда, как известно из теории делимости целых чисел, числа ln и m тоже взаимно просты. Итак, anln делится на m и m взаимно просты с ln, значит, an делится на m.

Доказанная тема позволяет значительно сузить область поиска рациональных корней многочлена с целыми коэффициентами. Продемонстрируем это на конкретном примере. Найдем рациональные корни многочлена f (x) =6x4+13x2-24x2-8x+8. Согласно теореме, рациональные корни этого многочлена находятся среди несократимых дробей вида l/m, где l - делитель свободного члена a0=8, а m - делитель старшего коэффициента a4=6. при этом, если дробь l/m - отрицательная, то знак "-" будем относить к числителю. Например, - (1/3) = (-1) /3. Значит, мы можем сказать, что l - делитель числа 8, а m - положительный делитель числа 6.

Так как делители числа 8 - это ±1, ±2, ±4, ±8, а положительными делителями числа 6 будут 1, 2, 3, 6, то рациональные корни рассматриваемого многочлена находятся среди чисел ±1, ±1/2, ±1/3, ±1/6, ±2, ±2/3, ±4, ±4/3, ±8, ±8/3. напомним, что мы выписали лишь несократимые дроби.

Таким образом, мы имеем двадцать чисел - "кандидатов" в корни. Осталось только проверить каждое из них и отобрать те, которые действительно являются корнями. Но опять-таки придется сделать довольно много проверок. А вот следующая теорема упрощает эту работу.

Если несократимая дробь l/m является корнем многочлена f (x) с целыми коэффициентами, то f (k) делится на l-km для любого целого числа k при условии, что l-km?0.

Для доказательства этой теоремы разделим f (x) на x-k с остатком. Получим f (x) = (x-k) s (x) +f (k). Так как f (x) - многочлен с целыми коэффициентами, то таким является многочлен s (x), а f (k) - целое число. Пусть s (x) =bn-1+bn-2+…+b1x+b0. Тогда f (x) - f (k) = (x-k) (bn-1xn-1+bn-2xn-2+ …+b1x+b0). Положим в этом равенстве x=l/m. Учитывая, что f (l/m) =0, получаем

f (k) = ( (l/m) - k) (bn-1 (l/m) n-1+bn-2 (l/m) n-2+…+b1 (l/m) +b0).

Умножим обе части последнего равенства на mn:

mnf (k) = (l-km) (bn-1ln-1+bn-2ln-2m+…+b1lmn-2+b0mn-1).

Отсюда следует, что целое число mnf (k) делится на l-km. Но так как l и m взаимно просты, то mn и l-km тоже взаимно просты, а значит, f (k) делится на l-km. Теорема доказана.

Вернемся теперь к нашему примеру и, использовав доказанную теорему, еще больше сузим круг поисков рациональных корней. Применим указанную теорему при k=1 и k=-1, т.е. если несократимая дробь l/m является корнем многочлена f (x), то f (1) / (l-m), а f (-1) / (l+m). Легко находим, что в нашем случае f (1) =-5, а f (-1) =-15. Заметим, что заодно мы исключили из рассмотрения ±1.

Итак рациональные корни нашего многочлена следует искать среди чисел ±1/2, ±1/3, ±1/6, ±2, ±2/3, ±4, ±4/3, ±8, ±8/3.

Рассмотрим l/m=1/2. Тогда l-m=-1 и f (1) =-5 делится на это число. Далее, l+m=3 и f (1) =-15 так же делится на 3. Значит, дробь 1/2 остается в числе "кандидатов" в корни.

Пусть теперь l\m=- (1/2) = (-1) /2. В этом случае l-m=-3 и f (1) =-5 не делится на - 3. Значит, дробь - 1/2 не может быть корнем данного многочлена, и мы исключаем ее из дальнейшего рассмотрения. Выполним проверку для каждой из выписанных выше дробей, получим, что искомые корни находятся среди чисел 1/2, ±2/3, 2, - 4.

Таким образом, довольно-таки простым приемом мы значительно сузили область поиска рациональных корней рассматриваемого многочлена. Ну, а для проверки оставшихся чисел применим схему Горнера:

Таблица 10.

6

13

-24

-8

8

1/2

6

16

-16

-16

0

Видим, что 1/2 - корень многочлена f (x) и f (x) = (x-1/2) (6x3+16x2-16x-16) = (2x-1) (3x3+8x2-8x-8). Ясно, что все другие корни многочлена f (x) совпадают с корнями многочлена g (x) =3x3+8x2-8x-8, а значит, дальнейшую проверку "кандидатов" в корни можно проводить уже для этого многочлена. При этом мы несколько выиграем по времени в вычислениях, так как проверку будем выполнять для более "короткого" многочлена. Находим:

Таблица 11.

3

8

-8

-8

2/3

3

10

-4/3

-80/9

Получили, что остаток при делении g (x) на x-2/3 равен - 80/9, т.е.2/3 не является корнем многочлена g (x), а значит, и f (x).

Далее легко находим, что - 2/3 - корень многочлена g (x) и g (x) = (3x+2) (x2+2x-4). Тогда f (x) = (2x-1) (3x+2) (x2+2x-4). Дальнейшую проверку можно проводить для многочлена x2+2x-4, что, конечно, проще, чем для g (x) или тем более для f (x). В результате получим, что числа 2 и - 4 корнями не являются.

Итак, многочлен f (x) =6x4+13x3-24x2-8x+8 имеет два рациональных корня: 1/2 и - 2/3.

Напомним, что описанный выше метод дает возможность находить лишь рациональные корни многочлена с целыми коэффициентами. Между тем, многочлен может иметь и иррациональные корни. Так, например, рассмотренный в примере многочлен имеет еще два корня: - 1±v5 (это корни многочлена х2+2х-4). А, вообще говоря, многочлен может и вовсе не иметь рациональных корней.

Теперь дадим несколько советов.

При испытании "кандидатов" в корни многочлена f (x) с помощью второй из доказанных выше теорем обычно используют последнюю для случаев k=±1. Другими словами, если l/m - "кандидат" в корни, то проверяют, делится ли f (1) и f (-1) на l-m и l+m соответственно. Но может случится, что, например, f (1) =0, т.е.1 - корень, а тогда f (1) делится на любое число, и наша проверка теряет смысл. В этом случае следует разделить f (x) на x-1, т.е. получить f (x) = (x-1) s (x), и проводить испытания для многочлена s (x). При этом не следует забывать, что один корень многочлена f (x) - x1=1 - мы уже нашли.

Если при проверке "кандидатов" в корни, оставшиеся после использования второй теоремы о рациональных корнях, по схеме Горнера получим, что, например, l/m - корень, то следует найти его кратность. Если она равна, скажем, k, то f (x) = (x-l/m) ks (x), и дальнейшую проверку можно выполнять для s (x), что сокращает вычисления.

Таким образом, мы научились находить рациональные корни многочлена с целыми коэффициентами. Оказывается, что тем самым мы научились находить иррациональные корни многочлена с рациональными коэффициентами. В самом деле, если мы имеем, например, многочлен f (x) =x4+2/3x3+5/6x2+3/8x+2, то, приведя коэффициенты к общему знаменателю и внеся его за скобки, получим f (x) =1/24 (24x4+16x3-20x2+9x+48). Ясно, что корни многочлена f (x) совпадают с корнями многочлена, стоящего в скобках, а у него коэффициенты - целые числа. Докажем, например, что sin100 - число иррациональное. Воспользуемся известной формулой sin3б=3sinб-4sin3б. Отсюда sin300=3sin100-4sin3100. Учитывая, что sin300=0.5 и проводя несложные преобразования, получаем 8sin3100-6sin100+1=0. Следовательно, sin100 является корнем многочлена f (x) =8x3-6x+1. Если же мы будем искать рациональные корни этого многочлена, то убедимся, что их нет. Значит, корень sin100 не является рациональным числом, т.е. sin100 - число иррациональное.

§ 2. Задачи о многочленах

Задача 1.

Доказать, что многочлен

a1+a2x+a3y+a4xy+a5x2+a6y2+a7x4+a8y4+a9x2y2+a10xy3+a11x3y

не является произведением двух многочленов, одного от x, другого от y, если не один из его коэффициентов не равен нулю.

Решение.

Пусть денный многочлен является произведением многочленов P (x) и Q (y).

Так как в этом многочлене есть такие коэффициенты, как a10xy3 и a11x3y и есть свободный член a1, следовательно, при произведении должны быть такие коэффициенты как mx3+ny3, а их нет, следовательно данный многочлен не является произведением многочленов P (x) и Q (x). ч. т.д.

Задача 2.

Многочлен с действительными коэффициентами ax2+bx+c, a>0 имеет чисто мнимый корень. Доказать, что его можно представить в виде (Ax+B) 2+ (Cx+D) 2.

Решение.

Если x=i - корень многочлена, то его корнем является так же число x=-i, теперь по теореме Виета найдем b и c:

и многочлен принимает вид: ax+a, который можно привести к нужному виду:

ч. т.д.

Задача 3.

Докажите, что многочлен x12-x9+x4-x+1 при всех действительных значениях x положителен.

Решение.

Разберем отдельно случаи при x<0 и x?0.

В первом случае разобьем многочлен на три слагаемых:

(1-x) + (x4-x9) +x12, 1-x>0, x4-x9=x4 (1-x5) >0, x12>0, следовательно и вся сумма больше нуля.

Во втором случае представим многочлен в виде:

(x8+1) (x4-x) +1, x8+1>0.

Для x4рассмотрим два случая: при х>1, x4-х>0, следовательно и все выражение больше нуля; при х<1, - 1<x4-х?0, а выражение x8+1 чуть больше 1, следовательно произведение - 1< (x8+1) (x4-x) ?.0 и вся сумма больше нуля.Ч. т.д.

Задача 4.

При каких значениях a и b многочлен x4+ax3+bx2-8x+1 имеет точный квадрат.

Решение.

Точный квадрат имеет вид: (mx2+nx+p) 2, возведем его в квадрат: (mx2+nx+p) 2=m2x4+ (nx+p) 2+2mx2 (nx+p) =m2x4+n2x2+p2+2npx+2mnx3+ 2mpx2=m2x4+2mnx3+ (n2+2mp) x2+2npx+p2. Приравняем коэффициенты при одинаковых степенях.

1 случай:

2 случай:

3 случай:

4 случай:

Ответ: a1=-8, b1=18; a2=8, b2=14.

Задача 5.

Докажите, что если многочлен a0xn+a1xn-1+ … +an, a0?0 при всех действительных значениях х положителен, то он представляется в виде суммы квадратов двух многочленов.

Решение.

Данный многочлен не может иметь действительных корней; следовательно, его корни являются попарно комплексно-сопряженными. Поэтому многочлен представляется в виде:

A [ (x-б1) (x-бk)] [ (x-) (x-)], где А>0.

Если f (x) - действительная часть многочлена, получающегося после раскрытия скобок в первой квадратной скобке, и g (x) - его мнимая часть, то вторая квадратная скобка представляется в виде f (x) -ig (x) (так как она комплексно-сопряжена с первой).

Данный многочлен, следовательно, равен

A [f (x) +ig (x)] [f (x) - ig (x)] = A [f2 (x) +g2 (x)].

Задача 6.

Число с является корнем многочлена

f (x) =anxn+an-1xn-1+ … +a1x+a0. Укажите какой-либо корень многочлена на g (x) =anxn-an-1xn-1+an-2xn-2+ … + (-1) na0.

Решение.

Так как с - корень, то

f (c) =ancn+an-1cn-1+an-2cn-2+ … +a1x+a0=0.

Покажем, что -с - корень многочлена g (x). Вычислим

g (-c) =an (-c) n-an-1 (-c) n-1+an-2 (-c) n-2 - + (-1) na0.

Если n - четное число, то n-1 - нечетное, n-2 - четное, n-2 - четное и т.д. Тогда g (-c) =ancn+an-1cn-1+an-2cn-2+ … +a0=0. Если же n - нечетное, то n-1 - четное, n-2 - нечетное и т.д. Тогда g (-c) =-ancn-an-1cn-1-an-2cn-2 - - a0= - f (c) =0.

Задача 7.

Пусть многочлен f (x) с целыми коэффициентами принимает значение, равное 5, при пяти различных целых значениях переменной х. докажите, что f (x) не имеет целых корней.

Решение.

Пусть с1, с2, с3, с4, с5 - такие числа, что f (c1) =f (c2) =f (c3) =f (c4) =f (c5) =5. Рассмотрим многочлен g (x) =f (x) - 5. Числа с1, с2, с3, с4, с5 являются его корнями, а значит, f (x) =f (x) - 5= (x-c1) (x-c2) (x-c3) (x-c4) (x-c5) s (x). Если теперь а - целый корень многочлена f (x), то, положив в последнем равенстве х=а, получим - 5= (a-c1) (a-c2) (a-c3) (a-c4) (a-c5) s (a). так как все числа с1, с2, с3, с4, с5 различны, то различны и числа a-c1, a-c2, a-c3, a-c4, a-c5. Следовательно, число - 5 имеет по крайней мере пять различных целых делителей, в то время как на самом деле их только четыре: ±1, ±5. Пришли к противоречию.

Задача 8.

Пусть f (x) - многочлен с целыми коэффициентами и несократимая дробь l/m является его корнем. Докажите, что если: f (0), f (1) - нечетные числа, то m - четное число.

Решение.

Так как f (0) - свободный член многочлена f (x), f (0) делиться на l. Отсюда следует, что l - нечетное число. Далее, так как f (1) делится на l-m, то l-m - тоже нечетное число. Отсюда следует, что разность l- (l-m) =m - четное число.

Задача 9.

Многочлен f (x) обладает следующим свойством: для некоторой арифметической прогрессии значения х с разностью, отличной от нуля, соответствующее значение многочлена так же образует арифметическую прогрессию.

Докажите, что ст. f (x) ?1.

Решение.

Обозначим члены арифметической прогрессии, которую образуют значения х, через с1, с2, с3, …, а разность - через d1. тогда соответствующая арифметическая прогрессия значений многочлена имеет вид: f (c1), f (c2), f (c3), …; обозначим ее разность d2. рассмотрим многочлен g (x) = (d2/d1) x+f (c1) - (d2/d1) c1. Имеем.

g (c1) = (d2/d1) c1+f (c1) - d2/d1) c1=f (c1),

g (c2) = (d2/d1) c2+f (c1) - (d2/d1) c1=f (c1) + (d2/d1) (c2-c1) =f (c1) + (d2/d1) d1=f (c1) +d2=f (c2).

Аналогично устанавливается, что g (c3) =f (c3), g (c4) =f (c4),, g (cn+1) =f (cn+1). Таким образом f (x) и g (x) принимают одинаковые значения при x=c1, с2, с3, …, сn, а значит, f (x) =g (x). Тогда ст. f (x) =ст. g (x) ?1 (если d2=0, то g (x) - многочлен нулевой степени).

Задача 10.

Найдите степень многочлена f (x), если, f (x) = (a2-4) x3+ (a-2) x2+3.

Решение.

Если a2-4?0, т.е. a?±2, то ст. f (x) =3. Осталось рассмотреть случаи a=-2 и a=2. Если a=-2, то f (x) =-4x2+3, т.е. ст. f (x) =2. Если a=2, то f (x) =3, т.е. ст. f (x) =0.

Задача 11.

Найдите многочлен второй степени f (x), если, f (1) =1, f (2) =2, f (3) =5.

Решение. Многочлен второй степени имеет вид f (x) =ax2+bx+c. Вычислив f (1), f (2), f (3), получим

Решив эту систему, найдем: a=1, b=-2, c=2, т.е. f (x) =x2-2x+2.

Задача 12.

Даны многочлены f (x) =x3-2x2+3 и g (x) =x2-x+2. Найдите f (g (1)).

Решение.

Вычислим сначала g (1) =12-1+2=2. Тогда f (g (1)) =f (2) =23-2Ч22+3=3.

Задача 13.

Даны многочлены f (x) и g (x), причем ст. (f (x) g (x)) =5 и ст. (f (x) +g (x)) =3. Найдите ст. f (x) и ст. g (x).

Решение.

Из условий задачи следует, что ст. f (x) +ст. g (x) =5. Значит, возможны следующие случаи:

ст. f (x) =0, ст. g (x) =5;

ст. f (x) =1, ст. g (x) =4;

ст. f (x) =2, ст. g (x) =3;

ст. f (x) =3, ст. g (x) =2;

ст. f (x) =4, ст. g (x) =1;

ст. f (x) =5, ст. g (x) =0.

Если допустить, что ст. f (x) =0, ст. g (x) =5, то легко заметить, что ст. (f (x) +g (x)) =5. Значит, случай 1 невозможен. Аналогично и в случаях 2, 5,6. Таким образом, либо ст. f (x) =2 и ст. g (x) =0, или наоборот.

Задача 14.

Укажите такой многочлен f (x), для которого числа - 1, 2, 3, 5 являются корнями.

Решение.

f (x) = (x+1) (x-2) (x-3) (x-5).

Задача 15.

Укажите такой многочлен f (x), который при x=1, 2, 3, 4, 5 принимает значение, равное 7.

Решение.

f (x) = (x-1) (x-2) (x-3) (x-4) (x-5) +7.

Задача 16.

Найдите f (g (x)), g (f (x)) и f (f (x)), если f (x) =2x-1, а g (x) =x3+2x+3.

Решение.

f (g (x)) =2 (x3+2x+3) - 1; g (f (x)) = (2x-1) 3+2 (2x-1) +3; f (f (x) =2 (2x-1) - 1.

Задача 17.

Докажите, что cos 200 является иррациональным числом.

Решение.

Воспользуемся известной формулой cos3б=4cos3б-3cosб. Отсюда cos600=4cos3200-3cos200. Учитывая, что cos600=0.5 и проводя несложные преобразования, получаем 8cos3200-6cos200-1=0. Следовательно, cos200 является корнем многочлена f (x) =8x3-6x-1. Если же мы будем искать рациональные корни этого многочлена, то убедимся, что их нет. Значит, корень cos200 не является рациональным числом, т.е. cos200 - число иррациональное.

Задача 18.

Докажите, что уравнение x4-3x3y=y4 не имеет решений в целых числах, отличных от нуля.

Решение.

Допустим, что уравнение имеет решение в целых числах x=a, y=b, отличных от нуля, т.е. a4-3a3b=b4. Так как b?0, то разделим обе части полученного равенства на b4. Тогда (a/b) 4-3 (a/b) - 1=0. Таким образом, a/b - рациональный корень многочлена f (t) =t4-3t3-1. Но, как легко убедиться, f (t) рациональных корней не имеет. Получили противоречие, а значит, наше допущение неверно.

Заключение

Я изучила теорию о многочленах. В ней специально был подобран интересный материал, который не встречается в школьном курсе, а если и встречается, то менее ярко преподносится. В эту курсовую работу было внесено много примеров и задач, включая олимпиадные, которые помогают лучше понять данный материал.

Важно не научить, а увлечь предметом школьника. Если это удастся, то ребенок сам будет изучать те аспекты предмета, которые не предусмотрены школьным курсом.

Думаю, данная работа может послужить методическим пособием для проведения краткого факультатива, но нужно учитывать, что единой системы преподавания этой темы на сегодняшний день нет.

Список литературы

1. В.В. Деменчук "Многочлены и микроколькулятор". Минск, "Высшая школа", 1988г.

2. А.И. Кострикин "Введение в алгебру". Москва, "Физматлит", 2001г.

3. А.Г. Курош "Курс высшей алгебры". Санкт-Петербург, "Лань", 2003г.

4. А.А. Прокофьев, И.Б. Кожухов "Универсальный справочник по математике школьникам и абитуриентам ". Москва, "Лист Нью", 2003г.

5. "Сборник задач московских математических олимпиад". Москва, "Просвещение", 1965г.


Подобные документы

  • Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.

    курсовая работа [1,2 M], добавлен 04.07.2015

  • Многочлен как сумма или разность одночленов. Запись многочлена в стандартном виде. Операции при сложении и вычитании многочленов. Умножение многочлена на одночлен. Деление многочлена на одночлен. Разложение многочлена на множители, метод группировки.

    презентация [53,2 K], добавлен 26.02.2010

  • Теория высшей алгебры в решении задач элементарной математики. Программы для нахождения частного и остатка при делении многочленов, наибольшего общего делителя двух многочленов, производной многочлена; разложения многочленов на кратные множители.

    дипломная работа [462,8 K], добавлен 09.01.2009

  • Понятие многочленов и их свойства. Сущность метода неопределённых коэффициентов. Разложения многочлена на множители. Максимальное число корней многочлена над областью целостности. Методические рекомендации по изучению темы "Многочлены" в школьном курсе.

    дипломная работа [733,7 K], добавлен 20.07.2011

  • Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.

    презентация [204,5 K], добавлен 18.04.2013

  • Возведение в степень комплексного числа. Бинарная алгебраическая операция. Геометрическая интерпретация комплексных чисел. Базис, ранг и линейные комбинации для системы векторов. Кратные корни многочлена. Разложение многочлена на элементарные дроби.

    контрольная работа [247,0 K], добавлен 25.03.2014

  • Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.

    курсовая работа [2,5 M], добавлен 30.06.2011

  • Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.

    курсовая работа [391,8 K], добавлен 19.12.2012

  • Сущность метода деления многочлена на линейный двучлен. Особенности вычисления значений аналитической, логарифмической и показательной функций. Сущность теоремы Безу. Расположение вычислений по схеме Горнера. Вычисление значений синуса и косинуса.

    презентация [142,0 K], добавлен 18.04.2013

  • Содержание текстов Единого государственного экзамена. Решение уравнений высших степеней. Разложение многочлена третьей степени на множители. Определение корней квадратного уравнения и рациональных корней многочлена. Старший коэффициент делимого.

    реферат [42,1 K], добавлен 20.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.