Корни многочленов от одной переменной

Понятие многочлена и его степени. Многочлен, у которого все коэффициенты равны нулю. Многочлены от одной переменной. Равенство и значение многочленов. Операции над многочленами, основные понятия схемы Горнера. Кратные и рациональные корни многочлена.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 15.06.2010
Размер файла 90,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

27

Новосибирский государственный педагогический университет.

Математический факультет.

Кафедра алгебры.

Курсовая работа по математике.

Многочлены

Выполнила: студентка 35гр.

Голобокова О.В.

Научный руководитель:

старший преподаватель

Гейбука С.В.

г. Новосибирск, 2008

Содержание

  • Введение
    • §1. Многочлены от одной переменной
    • Понятие многочлена. Степень многочлена
    • Равенство многочленов. Значение многочленов
    • Операции над многочленами
    • Схема Горнера
    • Корни многочленов
    • Кратные корни многочлена
    • Рациональные корни многочлена
    • § 2. Задачи о многочленах
    • Заключение
    • Список литературы

Введение

Тема моей курсовой работы "Многочлены".

В ней я хочу дать понятие многочлена, определить операции над ними, рассмотреть способы нахождения остатков при делении: схема Горнера. А так же рассмотреть виды корней: рациональные, кратные.

Для этого мне нужно изучить научную и методическую литературу, подобрать и решить задачи по данной теме, включая олимпиадные.

В первой главе своей работы я рассматриваю основное понятие многочлена, операции над ними, ввожу определение и основные понятия схемы Горнера, рассматриваю кратные и рациональные корни многочлена. Во второй главе решаю задачи, включая олимпиадные.

§1. Многочлены от одной переменной

Понятие многочлена. Степень многочлена

Многочленом от переменной х будем называть выражение вида

anxn+an-1xn-1+... +a1x+a0,где n - натуральное число; аn, an-1,..., a1, a0 - любые числа, называемые коэффициентами этого многочлена. Выражения anxn, an-1xn-1,..., a1х, a0 называются членами многочлена, а0 - свободным членом.

Часто будем употреблять и такие термины: an - коэффициент при хn, аn-1 - коэффициент при хn-1 и т.д.

Примерами многочленов являются следующие выражения: 4+2х3+ (-3) х3+ (3/7) х+; 2+0х+3; 2+0х+0. Здесь для первого многочлена коэффициентами являются числа 0, 2, - 3, 3/7, ; при этом, например, число 2 - коэффициент при х3, а - свободный член.

Многочлен, у которого все коэффициенты равны нулю, называется нулевым.

Так, например, многочлен 2+0х+0 - нулевой.

Из записи многочлена видно, что он состоит из нескольких членов. Отсюда и произошел термин ‹‹многочлен›› (много членов). Иногда многочлен называют полиномом. Этот термин происходит от греческих слов рплй - много и нпмч - член.

Многочлен от одной переменной х будем обозначать так: f (x), g (x), h (x) и т.д. например, если первый приведённых выше многочленов обозначить f (x), то можно записать: f (x) =0x4+2x3+ (-3) x2+3/7x+.

Для того чтобы запись многочлена выглядела проще и выглядела компактнее, договорились о ряде условностей.

Те члены не нулевого многочлена, у коэффициенты равны нулю, не записывают. Например, вместо f (x) =0x3+3x2+0x+5 пишут: f (x) =3x2+5; вместо g (x) =0x2+0x+3 - g (x) =3. Таким образом, каждое число - это тоже многочлен. Многочлен h (x), у которого все коэффициенты равны нулю, т.е. нулевой многочлен, записывают так: h (x) =0.

Коэффициенты многочлена, не являющиеся свободным членом и равные 1, тоже не записывают. Например, многочлен f (x) =2x3+1x2+7x+1 можно записать так: f (x) =x3+x2+7x+1.

Знак ‹‹-›› отрицательного коэффициента относят к члену, содержащему этот коэффициент, т.е., например, многочлен f (x) =2x3+ (-3) x2+7x+ (-5) записывают в виде f (x) =2x3-3x2+7x-5. При этом, если коэффициент, не являющийся свободным членом, равен - 1, то знак "-" сохраняют перед соответствующим членом, а единицу не пишут. Например, если многочлен имеет вид f (x) =x3+ (-1) x2+3x+ (-1), то его можно записать так: f (x) =x3-x2+3x-1.

Может возникнуть вопрос: зачем, например, уславливаться о замене 1х на х в записи многочлена, если известно, что 1х=х для любого числа х? Дело в том, что последнее равенство имеет место, если х - число. В нашем же случае х - элемент произвольной природы. Более того запись 1х мы пока не имеем права рассматривать как произведение числа 1 и элемента х, ибо, повторяем х - это не число. Именно таким обстоятельством и вызваны условности в записи многочлена. И если мы дальше говорим все-таки о произведении, скажем, 2 и х без всяких оснований, то этим допускаем некоторую нестрогость.

В связи с условностями в записи многочлена обращаем внимание на такую деталь. Если имеется, например, многочлен f (x) =3х3-2х2-х+2, то его коэффициенты - это числа 3, - 2, - 1,2. Конечно, можно было бы сказать, что коэффициентами являются числа 0, 3, - 2, - 1, 2, имея в виду такое представление данного многочлена: f (x) =0x4-3x2-2x2-x+2.

В дальнейшем для определенности будем указывать коэффициенты, начиная с отличного от нуля, в порядке их следования в записи многочлена. Так, коэффициентами многочлена f (x) =2x5-x являются числа 2, 0, 0, 0, - 1, 0. Дело в том, что хотя, например, член с х2 в записи отсутствует, это лишь означает, что его коэффициент равен нулю. Аналогично свободного члена в записи нет, поскольку он равен нулю.

Если имеется многочлен f (x) =anxn+an-1xn-1+... +a1x+a0 и an?0, то число n называют степенью многочлена f (x) (или говорят: f (x) - n-й степени) и пишут ст. f (x) =n. В этом случае an называется старшим коэффициентом, а anxn - старшим членом данного многочлена.

Например, если f (x) =5x4-2x+3, то ст. f (x) =4, старший коэффициент - 5, старший член - 4.

Рассмотрим теперь многочлен f (x) =a, где а - число, отличное от нуля. Чему равна степень этого многочлена? Легко заметить, что коэффициенты многочлена f (x) =anxn+an-1xn-1+... +a1x+a0 пронумерованы справа налево числами 0, 1, 2, …, n-1, n и если an?0, то ст. f (x) =n. Значит, степень многочлена - это наибольший из номеров его коэффициентов, отличных от нуля (при той нумерации, о которой только что говорилось). Вернемся теперь к многочлену f (x) =a, a?0, и пронумеруем его коэффициенты справа налево числами 0, 1, 2, … коэффициент а при этом получит номер 0, а так как все остальные коэффициенты - нулевые, то это и есть самый большой из номеров коэффициентов данного многочлена, отличных от нуля. Значит ст. f (x) =0.

Таким образом, многочлены нулевой степени - это числа, отличные от нуля.

Осталось выяснить, как обстоит дело со степенью нулевого многочлена. Как известно, все его коэффициенты равны нулю, и поэтому к нему нельзя применить данное выше определение. Так вот, условились нулевому многочлену не присваивать никакой степени, т.е. что он не имеет степени. Такая условность вызвана некоторым обстоятельством, которые будут рассмотрены несколько позже.

Итак, нулевой многочлен степени не имеет; многочлен f (x) =a, где а - число, отличное от нуля, имеет степень 0; степень же всякого другого многочлена, как легко заметить, равна наибольшему показателю степени переменной х, коэффициент при которой равен нулю.

В заключение напомним еще несколько определений. Многочлен второй степени f (x) =ax2+bx+c называется квадратным трехчленом. Многочлен первой степени вида g (x) =x+c называется линейным двучленом.

Равенство многочленов. Значение многочленов

Два многочлена f (x) и g (x) считаются равными, если равны их коэффициенты при одинаковых степенях переменной х и свободные члены (или, короче, равны их соответствующие коэффициенты). В этом случае пишут: f (x) =g (x).

Например, многочлены f (x) =x3+2x2-3x+1 и g (x) =2x2-3x+1 не равны, ибо у первого из них коэффициент при х3 равен 1, а у второго - нулю (согласно принятым условностям мы можем записать: g (x) =0x3+2x2-3x+1. В этом случае пишут: f (x) ?g (x). Не равны и многочлены h (x) =2x2-3x+5, s (x) =2x2+3x+5, так как у них коэффициенты при х различны. А вот многочлены f1 (x) =2x5+3x3+bx+3 и g1 (x) =2x5+ax3-2x+3 равны тогда и только тогда, когда а=3, а b=-2.

Пусть даны многочлен f (x) =anxn+an-1xn-1+... +a1x+a0 и некоторое число с. Число f (c) =ancn+an-1cn-1+... +a1c+a0 называется значением многочлена f (x) при х=с.

Таким образом, чтобы найти f (c), в многочлен вместо х нужно подставить с и провести необходимые вычисления. Например, если f (x) =2x3+3x2-x+5, то f (-2) =2 (-2) 3+ (-2) 2- (-2) +5=3.

Рассмотрим многочлен f (x) =a и найдем, например, f (2). Для этого в многочлен вместо х надо подставить число 2 и произвести необходимые вычисления. Однако в нашем случае f (x) =a и переменной х в явном виде нет. Вспомним, что рассматриваемый многочлен можно записать в виде f (x) =0x+a. Теперь все в порядке, можно подставить значение х=2: f (2) =02+a=a. Заметим, что для данного многочлена f (c) =a при любом с. В частности, нулевой многочлен при любом с принимает значение, равное нулю.

Вообще говоря, многочлен при различных значениях переменной х может принимать различные значения. Нас же довольно часто будут интересовать те значения х, при которых многочлен принимает значение 0. Число с называется корнем многочлена f (x), если f (c) =0.

Например, если f (x) =x2-3x+2, то числа 1 и 2 являются корнями этого многочлена, ибо f (1) =0 и f (2) =0. А вот многочлен f (x) =5 корней вообще не имеет. В самом деле, при любом значении х он принимает значение 5, а значит, никогда не принимает значение 0. Для нулевого же многочлена, как легко заметить, каждое число является корнем.

Поиск корней многочленов является одной из важнейших задач алгебры. Находить корни линейных двучленов и квадратных трехчленов учат еще в школе. Что касается многочленов более высоких степеней, то для них такая задача является весьма трудной и не всегда разрешимой. В дальнейшем мы неоднократно будем ею заниматься. А сейчас заметим только, что найти корни многочлена f (x) =anxn+an-1xn-1+... +a1x+a0 и решить уравнение anxn+an-1xn-1+... +a1x+a0=0 - это эквивалентные задачи. Поэтому, научившись находить корни многочлена, мы научимся решать соответствующие уравнения, и наоборот.

Обратим внимание на различие между двумя утверждениями: "многочлен f (x) равен нулю (или, что то же самое, многочлен f (x) - нулевой)" и "значение многочлена f (x) при х=с равно нулю". Например, многочлен f (x) =x2-1 не равен нулю, ибо у него есть ненулевые коэффициенты, а его значение при х=1 равно нулю. Короче, f (x) ?0, а f (1) =0.

Между понятиями равенства многочленов и значения многочлена существует тесная взаимосвязь. Если даны два равных многочлена f (x) и g (x), то их соответствующие коэффициенты равны, а значит, f (c) = g (c) для каждого числа с. Другими словами, если f (c) = g (c) для каждого числа c, то равны ли многочлены f (x) и g (x)? Попробуем ответить на этот вопрос в частном случае, когда f (x) = px2 +qx+r, а g (x) = kx+m. Так как f (c) = g (c) для каждого числа с, то, в частности, f (0) = g (0), f (1) = g (1), f (-1) = g (-1).

Вычислив фигурирующие в этих равенствах значения рассматриваемых многочленов, получим систему

Из этой системы следует, что p = 0, q = k, r = m, а значит, f (x) = g (x).

Таким образом, для рассмотренного примера ответ на поставленный вопрос положителен. Оказывается, это справедливо и в общем случае, после ознакомления с некоторыми другими понятиями и утверждениями теории многочленов.

Операции над многочленами

Многочлены можно складывать, вычитать и умножать по обычным правилам раскрытия скобок и приведения подобных членов. При этом в результате снова получается многочлен. Указанные операции обладают известными свойствами:

f (x) +g (x) =g (x) +f (x),

f (x) + (g (x) +h (x)) = (f (x) +g (x)) +h (x),

f (x) g (x) =g (x) f (x),

f (x) (g (x) h (x)) = (f (x) g (x)) h (x),

f (x) (g (x) +h (x)) =f (x) g (x) +f (x) h (x).

Установим еще несколько полезных свойств операций над многочленами.

Пусть даны два многочлена f (x) =anxn+an-1xn-1+... +a1x+a0, an?0, и g (x) =bmxm+bm-1xm-1+... +b1x+bm?0. Ясно, что ст. f (x) =n, а ст. g (x) =m. Нетрудно заметить, что если перемножить эти два многочлена, получится многочлен вида f (x) g (x) =anbmxm+n+... +a0b0. Так как an?0 и bn?0, то anbm?0, а значит, ст. (f (x) g (x)) =m+n. Отсюда следует важное утверждение.

Степень произведения двух ненулевых многочленов равна сумме степеней сомножителей, или, короче, ст. (f (x) g (x)) =ст. f (x) +ст. g (x).

Легко доказать, что аналогичное утверждение имеет место для любого конечного числа ненулевых сомножителей, т.е. что ст. (f1 (x) f2 (x)... fs (x)) = ст. f1 (x) +ст. f2 (x) +... +ст. fs (x).

Из рассуждений, приведенных выше для степени произведения двух многочленов, следует два полезных утверждения, которые легко распространяются на любое конечное число сомножителей.

Старший член (коэффициент) произведения двух ненулевых многочленов равен произведению старших членов (коэффициентов) сомножителей.

Свободный член произведения двух многочленов равен произведению свободных членов сомножителей.

Степени многочленов f (x), g (x) и f (x) ±g (x) связаны следующим соотношением: ст. (f (x) ±g (x)) ? max ст. f (x), ст. g (x) .

Напомним, что многочлен - выражение вид anxn+an-1xn-1+ … + +a1x+a0.

Будут ли многочленами выражения: 2x2+4+3x3; (x2-1) (2x+5); (x2+1) (x-3) + 2x?

Попробуем разобраться в этом.

Первое выражение можно рассматривать как сумму многочленов f1 (x) =2x2, f2 (x) +4, fa (x) +3x3. Но, как известно, сумма многочленов - это тоже многочлен. Значит, первое выражение можно считать неудачно записанным многочленом. Воспользовавшись тем, что при сложении многочленов слагаемые можно переставлять местами, получим 2x2+4+3x3 = f1 (x) +f2 (x) + f3 (x) =f3 (x) +f1 (x) +f2 (x) =3x3+2x2+4.

Аналогично второе выражение - это произведение многочленов g1 (x) =x2-1 и g2 (x) =2x+5, а значит, тоже многочлен. Легко убедиться, что и третье выражение также является многочленом.

Теперь познакомимся с еще одной операцией над многочленами - суперпозицией.

Суперпозицией многочленов f (x) и g (x) называется многочлен, обозначаемый f (g (x)), который получается если в многочлене f (x) вместо x подставить многочлен g (x).

Например, если f (x) =x2+2x-1 и g (x) =2x+3, то f (g (x)) =f (2x + 3) = (2x+ 3) 2+2 (2x+3) - 1=4x2+16x+14,g (f (x)) =g (x2+2x-1) =2 (x2+2x - 1) +3=2x2+4x+1.

Видно, что f (g (x)) ?g (f (x)), т.е. суперпозиция многочленов f (x), g (x) и суперпозиция многочленов g (x), f (x) различны. Таким образом, операция суперпозиции не обладает свойством переместительности.

Схема Горнера

Разделить с остатком многочлен f (x) на ненулевой многочлен g (x) - это значит представить f (x) в виде f (x) =g (x) s (x) +r (x), где s (x) и r (x) -многочлены и либо r (x) =0, либо ст. r (x) < ст. g (x). S (x) назовем неполным частным, а r (x) - остатком при делении f (x) на g (x).

Неполное частное при делении можно найти с помощью простого правила, называемого схемой Горнера, которое, кстати, позволяет найти и остаток.

Пусть f (x) =anxn+an-1xn-1+ … +a1x+a0, an?0 - многочлен n-й степени. При делении его на x - c мы получим неполное частное s (x) и остаток r, т.е. f (x) = (x - c) s (x) + r. Так как ст. f (x) = n, а ст. (x - c) = 1, то

ст. s (x) = n - 1, т.е. s (x) = bn-1xn-1 + bn-2xn-2 + … + b1x+ b0, bn-1 ? 0. Таким обрзом, имеем равенство

anxn+an-1xn-1+ … +a1x+a0 = (x - c) (bn-1xn-1+bn-2xn-2+ …+b1x+b0) +r.

Многочлены, стоящие в левой и правой частях этого соотношения, равны, а значит, равны их соответствующие коэффициенты. Приравняем их, раскрыв предварительно скобки и приведя подобные члены в правой части данного равенства. Получим:

a= bn-1,a-1 = bn-2 - cbn-1,a-2 = bn-3 - cbn-2,

a2 = b1 - cb2,a1 = b0 - cb1,a0 = r - cb0.

Напомним, что требуется найти неполное частное, т.е. его коэффициенты, и остаток.

Выразим их из полученных равенств:

bn-1 = an,

b n-2 = cbn-1 + an-1,b n-3 = cbn-2 + a n-2,

b1 = cb2 + a2,b0 = cb1 +a1,r = cb0 + a0.

Мы нашли формулы, по которым можно вычислять коэффициенты неполного частного s (x) и остаток r. При этом вычисления оформляются в виде следующей таблицы; она называется схемой Горнера.

Таблица 1.

Коэффициенты f (x)

an

an-1

an-2

a0

c

bn-1

bn-2 = cbn-1+ an-1

bn-3 = cbn-2+an-2

r = cb0 + a0

Коэффициенты s (x) остаток

В первую строку этой таблицы записывают подряд все коэффициенты многочлена f (x), оставляя первую клетку свободной. Во второй строке в первой клетке записывают число c.

Остальные клетки этой строки заполняют, вычисляя один за другим коэффициенты неполного частного s (x) и остаток r. Во второй клетке записывают коэффициент bn-1, который, как мы установили, равен an.

Коэффициент, стоящие в каждой последующей клетке, вычисляются по такому правилу: число c умножается на число, стоящее в предыдущей клетке, и к результату прибавляется число, стоящее над заполняемой клеткой. Чтобы запомнить, скажем, пятую клетку, т.е. найти стоящий в ней коэффициент, нужно c умножить на число, находящееся в четвертой клетке, и к результату прибавить число, стоящее над пятой клеткой.

Разделим, например, многочлен f (x) =3x4-5x2+3x-1 на х-2 с остатком, используя схему Горнера.

При заполнении первой строки этой схемы нельзя забывать о нулевых коэффициентах многочлена.

Так, коэффициенты f (x) - это числа 3, 0, - 5, 3, - 1. И еще следует помнить, что степень не полного частного на единицу меньше степени многочлена f (x).

Итак, выполняем деление по схеме Горнера:

Таблица 2.

3

0

-5

3

-1

2

3

6

7

17

33

Получим неполное частное s (x) =3x3+6x2+7x+17 и остаток r=33. заметим, что одновременно мы вычислили значение многочлена f (2) =33.

Разделим теперь тот же многочлен f (x) на х+2 с остатком. В этом случае с=-2. получим:

Таблица 3.

3

0

-5

3

-1

-2

3

-6

7

-11

21

В результате имеем f (x) = (x+2) (3x3-6x2+7x-11) +21.

Корни многочленов

Ранее мы установили что если с - корень многочлена f (x) делится на х-с. Сейчас обобщим это утверждение.

Пусть с1, с2, …, сm - различные корни многочлена f (x). Тогда f (x) делится на х-с1, т.е. f (x) = (x-c1) s1 (x). Положим в этом равенстве х=с2. Получим f (c2) = (c2-c1) s1 (c2) и, так f (c2) =0, то (с21) s1 (c2) =0. Но с21, т.е. с21?0, а значит, s1 (c2) =0. Таким образом, с2 - корень многочлена s1 (x). Отсюда следует, что s1 (x) делится на х-с2, т.е. s1 (x) = (x-c2) s2 (x). Подставим полученное выражение для s1 (x) в равенство f (x) = (x-c1) s1 (x). Имеем f (x) = (x-c1) (x-c2) s2 (x). Положив в последнем равенстве х=с3 с учетом того, что f (c3) =0, с3?с1, с32, получим, что с3 - корень многочлена s2 (x). Значит, s2 (x) = (x-c3) s3 (x), а тогда f (x) = (x-c1) (x-c2) (x-c3) s3 (x) и т.д. Продолжив эти рассужденья для оставшихся корней с4, с5, …, сm, мы, наконец, получим f (x) = (x-c1) (x-c2) (х-сm) sm (x), т.е. доказано формулируемое ниже утверждение.

Если с1, с2, …, сm - различные корни многочлена f (x), то f (x) можно представить в виде f (x) = (x-c1) (x-c2)... (x-cm) sm (x).

Отсюда вытекает важное следствие.

Если с1, с2,…, сm - различные корни многочлена f (x), то f (x) делится на многочлен (х-с1) (х-с2) (х-сm).

Как мы уже отмечали, одной из важных задач в теории многочленов является задача отыскания корней многочлена. В связи с этим существенным представляется вопрос о их числе. В самом деле, если дан какой-то многочлен и уже найдено, скажем, 10 его корней, то нужно знать, следует ли продолжать поиски. А вдруг этот многочлен больше не имеет корней? В таких случаях нам будет полезна приводимая ниже теорема.

Число различных корней ненулевого многочлена f (x) не больше, чем его степень.

Действительно, если f (x) корней не имеет, то ясно, что теорема верна, ибо ст. f (x) ?0.

Пусть теперь f (x) имеет m корней с1, с2, …, сm, причем все они различны. Тогда, по только что доказанному f (x) делится на (х-с1) (х-с2) (х-сm). В таком случае ст. f (x) ? ст. ( (х-с1) (х-с2) (х-сm)) =ст. (х-с1) + ст. (х-с2) +…+ст. (х-сm) =m, т.е. ст. f (x) ?m, а m - это число корней рассматриваемого многочлена.

А вот у нулевого многочлена бесконечно много корней, ведь его значение для любого х равно 0. В частности, по этой причине ему и не предписывают никакой определенной степени.

Из только что доказанной теоремы следует такое утверждение.

Если многочлен f (x) не является многочленом степени, большей, чем n, и имеет более, чем n корней, то f (x) - нулевой многочлен.

В самом деле, из условий этого утверждения следует, что-либо f (x) - нулевой многочлен, либо ст. f (x) ?n. Если предположить, что многочлен f (x) не нулевой, то ст. f (x) ?n, и тогда f (x) имеет не более, чем n корней. Приходим к противоречию. Значит, f (x) - ненулевой многочлен.

Пусть f (x) и g (x) - ненулевые многочлены степени, не большей, чем n. Если эти многочлены принимают одинаковые значения при n+1 значении переменной х, то f (x) =g (x).

Для доказательства рассмотрим многочлен h (x) =f (x) - g (x). Ясно, что - либо h (x) =0, либо ст. h (x) ?n, т.е. h (x) не является многочленом степени, большей, чем n. Пусть теперь число с такое, что f (c) =g (c). Тогда h (c) = f (c) - g (c) =0, т.е. с - корень многочлена h (x). Следовательно, многочлен h (x) имеет n+1 корень, а когда, как только что доказано, h (x) =0, т.е. f (x) =g (x).

Если же f (x) и g (x) принимают одинаковые значения при всех значениях переменной х, то эти многочлены тем более равны.

Эта теорема весьма эффективно используется при доказательстве некоторых числовых тождеств. Докажем, например, что для любых попарно различных чисел а, b, с и любого числа х.

( ( (x-b) (x-c)) / ( (a-b) (a-c))) + ( ( (x-a) (x-c)) ( (b-a) (b-c))) + ( ( (x-a) (x-b)) ( (c-a) (c-b))) =1

Конечно, можно преобразовав левую часть указанного равенства, убедиться, что в результате получится 1. Но такой метод доказательства связан с громоздкими преобразованиями. Попытаемся обойтись без них.

Будем рассматривать х как переменную. Тогда, как нетрудно заметить, в левой части тождества находится многочлен, который мы обозначим f (x). Переменная х входит в этот многочлен самое большое в степени 2, т.е. ст. f (x) ?2. в правой части того же тождества - так же многочлен: g (x) =1.

Найдем теперь значение многочленов f (x) и g (x) при х=a, b, c. Ясно, что g (a) =g (b) =g (c) =1. Далее,

f (a) = ( ( (a-b) (a-c)) / ( (a-b) (a-c))) + ( ( (a-a) (a-c)) ( (b-a) (b-c))) + ( ( (a-a) (a-b)) ( (c-a) (c-b))) =1.

Аналогично f (b) =f (c) =1. Следовательно, f (a) =g (a), f (b) =g (b), f (c) =g (c). Видим, что многочлены f (x) и g (x), не являющиеся многочленами степени выше, чем 2, принимают одинаковые значения при трех различных значениях переменной. Значит, f (x) =g (x).

Кратные корни многочлена

Если число с является корнем многочлена f (x), этот многочлен, как известно, делится на х-с. Может случиться, что f (x) делится и на какую-то степень многочлена х-с, т.е. на (х-с) k, k>1. В этом случае с называют кратным корнем. Сформулируем определение более четко.

Число с называется корнем кратности k (k-кратным корнем) многочлена f (x), если многочлен делится на (х-с) k, k>1 (k - натуральное число), но не делится на (х-с) k+1. Если k=1, то с называют простым корнем, а если k>1, - кратным корнем многочлена f (x).

В дальнейшем при определении кратности корней нам будет полезно следующее предложение.

Если многочлен f (x) представим в виде f (x) = (x-c) mg (x), m - натуральное число, то он делится на (х-с) m+1 тогда и только тогда, когда g (x) делится на х-с.

В самом деле, если g (x) делится на х-с, т.е. g (x) = (x-c) s (x), то f (x) = (x-c) m+1s (x), а значит, f (x) делится на (х-с) m+1.

Обратно, если f (x) делится на (х-с) m+1, то f (x) = (x-c) m+1s (x). Тогда (x-c) mg (x) = (x-c) m+1s (x) и после сокращения на (х-с) m получим g (x) = (x-c) s (x). Отсюда следует, что g (x) делится на х-с.

А сейчас вернемся к понятию кратности корня. Выясним, например, является ли число 2 корнем многочлена f (x) =x5-5x4+3x3+22x2-44x+24, и если да, найдем его кратность. Чтобы ответить на первый вопрос, проверим с помощью схемы Горнера, делится ли f (x) на х-2. имеем:

Таблица 4.

1

-5

3

22

-44

24

2

1

-3

-3

16

-12

0

Как видим, остаток при делении f (x) на х-2 равен 0, т.е. делится на х-2. Значит, 2 - корень этого многочлена. Кроме того, мы получили, что f (x) = (x-2) (x4-3x3-3x2+16x-12). Теперь выясним, является ли f (x) на (х-2) 2. Это зависит, как мы только что доказали, от делимости многочлена g (x) =x4-3x3-3x2+16x-12 на х-2. Снова воспользуемся схемой Горнера:

Таблица 5.

1

-3

-3

16

-12

2

1

-1

-5

6

0

Получили, что g (x) делится на х-2 и g (x) = (x-2) (x3-x2-5x+6). Тогда f (x) = (x-2) 2 (x3-x2-5x+6).


Подобные документы

  • Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.

    курсовая работа [1,2 M], добавлен 04.07.2015

  • Многочлен как сумма или разность одночленов. Запись многочлена в стандартном виде. Операции при сложении и вычитании многочленов. Умножение многочлена на одночлен. Деление многочлена на одночлен. Разложение многочлена на множители, метод группировки.

    презентация [53,2 K], добавлен 26.02.2010

  • Теория высшей алгебры в решении задач элементарной математики. Программы для нахождения частного и остатка при делении многочленов, наибольшего общего делителя двух многочленов, производной многочлена; разложения многочленов на кратные множители.

    дипломная работа [462,8 K], добавлен 09.01.2009

  • Понятие многочленов и их свойства. Сущность метода неопределённых коэффициентов. Разложения многочлена на множители. Максимальное число корней многочлена над областью целостности. Методические рекомендации по изучению темы "Многочлены" в школьном курсе.

    дипломная работа [733,7 K], добавлен 20.07.2011

  • Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.

    презентация [204,5 K], добавлен 18.04.2013

  • Возведение в степень комплексного числа. Бинарная алгебраическая операция. Геометрическая интерпретация комплексных чисел. Базис, ранг и линейные комбинации для системы векторов. Кратные корни многочлена. Разложение многочлена на элементарные дроби.

    контрольная работа [247,0 K], добавлен 25.03.2014

  • Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.

    курсовая работа [2,5 M], добавлен 30.06.2011

  • Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.

    курсовая работа [391,8 K], добавлен 19.12.2012

  • Сущность метода деления многочлена на линейный двучлен. Особенности вычисления значений аналитической, логарифмической и показательной функций. Сущность теоремы Безу. Расположение вычислений по схеме Горнера. Вычисление значений синуса и косинуса.

    презентация [142,0 K], добавлен 18.04.2013

  • Содержание текстов Единого государственного экзамена. Решение уравнений высших степеней. Разложение многочлена третьей степени на множители. Определение корней квадратного уравнения и рациональных корней многочлена. Старший коэффициент делимого.

    реферат [42,1 K], добавлен 20.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.