Равномерное распределение
Равномерное распределение случайной величины. График плотности вероятности. Сущность вычисления математического ожидания и дисперсии. Случайная величина, которая в зависимости от исхода испытания случайно принимает одно из множества возможных значений.
Рубрика | Математика |
Предмет | Математика |
Вид | презентация |
Язык | русский |
Прислал(а) | chastinvest |
Дата добавления | 01.11.2013 |
Размер файла | 160,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Построение доверительных интервалов для математического ожидания и дисперсии, соответствующие вероятности. Исследование статистических характеристик случайной величины на основе выбора объема. Теоретическая и эмпирическая плотность распределения.
курсовая работа [594,4 K], добавлен 02.01.2012График функции распределения. Определение математического ожидания, дисперсии и среднеквадратичного отклонения случайной величины. Вынесение константы за знак интеграла и переход от несобственного интеграла к определенному, стоящему под знаком предела.
презентация [63,8 K], добавлен 01.11.2013Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.
контрольная работа [263,8 K], добавлен 13.01.2014Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.
контрольная работа [59,7 K], добавлен 26.07.2010Распределение случайной величины c помощью закона Пуассона. Вычисления математического ожидания и дисперсии. Метод наибольшего правдоподобия. Асимметрия распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра.
презентация [710,3 K], добавлен 01.11.2013Непрерывная случайная величина и функция распределения. Математическое ожидание непрерывной случайной величины. Среднее квадратичное отклонение. Кривая распределения для непрерывной случайной величины. Понятие однофакторного дисперсионного анализа.
контрольная работа [165,5 K], добавлен 03.01.2012Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.
контрольная работа [390,7 K], добавлен 29.05.2014Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.
контрольная работа [104,7 K], добавлен 24.01.2013Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.
контрольная работа [162,6 K], добавлен 28.05.2012Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.
контрольная работа [38,5 K], добавлен 25.03.2015