Теория вероятностей и математическая статистика
Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 25.03.2015 |
Размер файла | 38,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФГБОУ ВПО «Уральский государственный экономический университет»
Центр дистанционного образования
Контрольная работа
"Теория вероятностей и математическая статистика"
Исполнитель:
Целищев Сергей Сергеевич
Екатеринбург
Задача 1
Студент знает 15 вопросов из 20. В билете 3 вопроса. Составить закон распределения случайной величины Х - числа известных студенту вопросов в билете. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.
Решение
Введем дискретную случайную величину = (Количество известных студенту вопросов в билете). Она может принимать значения 0, 1, 2 или 3. Найдем соответствующие вероятности.
, если все три вопроса студенту неизвестны. Вероятность этого события по классическому определению вероятности равна:
.
, если один вопрос известен и два вопроса студенту неизвестны. Вероятность этого события по классическому определению вероятности равна:
.
, если один вопрос неизвестен и два вопроса студенту известны. Вероятность этого события по классическому определению вероятности равна:
.
, если все три вопроса студенту известны. Вероятность этого события по классическому определению вероятности равна:
.
математический дисперсия среднеквадратический закон
Закон распределения случайной величины имеет вид:
0 |
1 |
2 |
3 |
||
1/114 |
15/114 |
35/76 |
91/228 |
Сумма вероятностей равна 1, поэтому расчеты проведены верно.
Найдем математическое ожидание, дисперсию и функцию распределения.
Математическое ожидание
.
Дисперсия
.
Среднеквадратическое отклонение
Задача 2
Решение
Найдем плотность распределения
Это плотность распределения равномерного на отрезке распределения.
Найдем математическое ожидание:
Найдем дисперсию:
Найдем вероятность попадания случайной величины в интервал (б,в) = (0,5; 3). Получим:
Построим схематично графики и .
Рисунок 1
Рисунок 2
Размещено на Allbest.ru
Подобные документы
Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.
контрольная работа [97,1 K], добавлен 26.02.2012Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.
контрольная работа [162,6 K], добавлен 28.05.2012Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.
контрольная работа [344,8 K], добавлен 31.10.2013Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.
контрольная работа [33,8 K], добавлен 13.12.2010Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.
контрольная работа [104,7 K], добавлен 24.01.2013Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.
контрольная работа [328,2 K], добавлен 07.12.2013Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
курсовая работа [29,7 K], добавлен 31.05.2010Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.
контрольная работа [480,0 K], добавлен 29.06.2010Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.
контрольная работа [91,7 K], добавлен 15.11.2011Определение вероятности определенного события. Вычисление математического ожидания, дисперсии, среднеквадратического отклонения дискретной случайной величины Х по известному закону ее распределения, заданному таблично. Расчет корреляционных признаков.
контрольная работа [725,5 K], добавлен 12.02.2010