Теория вероятности
Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.12.2010 |
Размер файла | 33,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Вариант 10
(для студентов, номера личных дел которых оканчиваются цифрой 0)
Контрольная работа №3
1. На первом станке обработано 20 деталей, из них семь с дефектами, на втором - 30, из них четыре с дефектами, на третьем - 50 деталей, из них 10 с дефектами. Все детали сложены вместе. Наудачу взятая деталь оказалась без дефектов.
Какова вероятность того, что она обработана на третьем станке?
Для решения этой задачи воспользуемся формулой Байеса:
Пусть Н1, Н2, … Нn - полная группа попарно несовместных событий гипотезы, А - случайное событие, тогда:
Введем гипотезы: Н1 - деталь обработана на первом станке, Н2 - деталь обработана на втором станке, Н3- деталь обработана на третьем станке.
Введем событие А - купленная деталь оказалась без дефектов.
Тогда, по условию задачи:
Так как на первом станке было изготовлено 20-7 = 13 деталей без дефектов, то
На втором станке было изготовлено 30-4 = 26 деталей без дефектов, то
А на третьем станке было изготовлено 50-10 = 40 деталей без дефектов, то
По формуле полной вероятности получаем:
По формуле Байеса:
Ответ:
2. Сколько семян следует взять, чтобы с вероятностью не менее чем 0,9545 быть уверенным, что частость взошедших семян будет отличаться от вероятности р - 0,9 не более чем на 2% (по абсолютной величине)?
Решение
По условию, р=0,9, тогда q=0,1. Необходимо найти n. Необходимо, чтобы условие
выполнялось с вероятностью, не меньшей, чем 0,9545. Раскроем модуль и найдем границы для m:
По теореме Муавра-Лапласа:
По условию, ?0,9545.
По математико-статистическим таблицам находим приближенное значение функции Лапласса:
Ф(Х) = 0,9545, где Х=.
Имеем: Ф(Х) = 2,0 , отсюда
Итак, следует взять не менее 900 семян.
3. Завод «Пино» (г. Новороссийск) отправил в Москву 2000 бутылок вина « Каберне». Вероятность того, что в пути может разбиться бутылка, равна 0,002.
Какова вероятность того, что в пути будет разбито не более пяти бутылок?
Если проводится n независимых испытаний, в каждом из которых событие А может наступить с одной и той же вероятностью, тогда вероятность Рn(m) того, что событие наступило m раз в этой серии испытаний можно найти:
Р(А) = ,
так как число n=2000 велико, а вероятность р=0,002 мала, то найдем:
то воспользуемся формулой Пуассона:
Искомая вероятность приближенно равна:
P = P2000(0)+ P2000(1)+ P2000(2)+ P2000(3)+ P2000(4)+ P2000(5)?0,0183+0,0733+0,1465+0,1954+0,1954+0,1563 = 0,7852
Ответ: Р?0,7852
4. Одна из случайных величин (X) задана законом распределения:
X |
0 |
1 |
3 |
|
p |
0,2 |
0,3 |
0,5 |
а другая (У) имеет биномиальное распределение с параметрами п=2,р=0,4.
Составить закон распределения их разности. Найти математическое ожидание и дисперсию этой случайной величины.
Найдем закон распределения для величины (Y):
y |
0 |
1 |
2 |
|
p |
p0=0,36 |
p1=0,48 |
p2=0,16 |
Z11 = X1 - Y1 = 0-0 = 0; p(Z11) = 0,2?0,36=0,072;
Z12 = X1 - Y2 = 0-1 = -1; p(Z12) = 0,2?0,48=0,096;
Z13 = X1 - Y3 = 0-2 = -2; p(Z13) = 0,2?0,16=0,032;
Z21 = X2 - Y1 = 1-0 = 1; p(Z11) = 0,3?0,36=0,108;
Z22 = X2 - Y2 = 1-1 = 0; p(Z11) = 0,3?0,48=0,144;
Z23 = X2 - Y3 = 1-2 = -1; p(Z11) = 0,3?0,16=0,048;
Z31 = X3 - Y1 = 3-0 = 3; p(Z11) = 0,5?0,36=0,018;
Z32 = X3 - Y2 = 3-1 = 2; p(Z11) = 0,5?0,48=0,024;
Z33 = X3 - Y3 = 3-2 = 1; p(Z11) = 0,5?0,16=0,08.
Итак, закон распределения разности имеет вид:
Z |
-2 |
-1 |
0 |
1 |
2 |
3 |
|
P |
0,032 |
0,096+0,048=0,144 |
0,072+0,144=0,216 |
0,108+0,08=0,188 |
0,24 |
0,18 |
Мат. ожидание:
М(Z) = -2?0,032-1?0,144+0?0,216+1?0,188+2?0,24+3?0,18= -0,02+0,48+0,54 = 1
Проверка:
М(Х) = 0,3+1,5 = 1,8
М(Y) = np = 0,8
M(X-Y) = M(X) - M(Y) = 1,8-0,8 = 1.
Дисперсия:
D(Z) = M(Z2)-[M(Z)]2
M(Z2)=0,128+0,144+0+0,188+0,96+1,62 = 3,04
D(Z) = 3,04-1 = 2,04.
5. Полагая, что длина изготавливаемой детали есть нормально распределенная случайная величина с математическим ожиданием М{Х) = 10 и средним квадратическим отклонением ? = 2, найти вероятность того, что длина наугад взятой детали заключена в интервале (5; 6).
В каких границах (симметричных относительно М(Х)) будет заключена длина наугад взятой детали с вероятностью 0,95?
1. 2
Используя таблицу значений нормированной функции Лапласса, имеем:
Список использованной литературы
1. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. -- 2-е изд., перераб. и доп.-- М.: ЮНИТИ-ДАНА, 2004. - 573 с.
Подобные документы
Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.
контрольная работа [38,5 K], добавлен 25.03.2015Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.
шпаргалка [328,7 K], добавлен 04.05.2015Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.
контрольная работа [97,1 K], добавлен 26.02.2012Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.
контрольная работа [106,1 K], добавлен 23.06.2009Случайные величины. Функция и плотность распределения вероятностей дискретной случайной величины. Сингулярные случайные величины. Математическое ожидание случайной величины. Неравенство Чебышева. Моменты, кумулянты и характеристическая функция.
реферат [244,6 K], добавлен 03.12.2007Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.
контрольная работа [57,3 K], добавлен 07.09.2010Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.
контрольная работа [344,8 K], добавлен 31.10.2013Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.
контрольная работа [86,4 K], добавлен 26.02.2012Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.
контрольная работа [104,7 K], добавлен 24.01.2013Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.
контрольная работа [87,2 K], добавлен 29.01.2014