Динамические модели
Динамическая модель как теоретическая конструкция, описывающая изменение состояний объекта. Характеристика основных подходов к построению: оптимизационный, описательный. Рассмотрение способов построения математических моделей дискретных объектов.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 31.01.2013 |
Размер файла | 769,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
динамический модель математический
Динамическая модель - теоретическая конструкция (модель), описывающая изменение (динамику) состояний объекта. Динамическая модель может включать в себя описание этапов или фаз или диаграмму состояний подсистем. Часто имеет математическое выражение и используется главным образом в общественных науках (например, в социологии), имеющих дело с динамическими системами, однако современная парадигма науки способствует тому, что данная модель также имеет широкое распространение во всех без исключения науках в т.ч. в естественных и технических.
Экономико-математические модели описывают экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент). Существует два подхода к построению динамической модели:
- оптимизационный (выбор оптимальной траектории экономического развития из множества возможных)
- описательный, в центре которого понятие равновесной траектории (т. е. уравновешенного, сбалансированного роста).
Динамические межотраслевые модели, экономико-математические модели плановых расчётов, позволяющие определять по годам перспективного периода объёмы производства продукции, капитальных вложений (а также ввода в действие основных фондов и производственных мощностей) по отраслям материального производства в их взаимной связи. В динамических межотраслевых моделях на каждый год планового периода задаются объёмы и структура "чистого" конечного продукта (личного и общественного потребления, накопления оборотных фондов и государственных резервов, экспортно-импортного сальдо, капитальных вложений, не связанных с увеличением производства в рассматриваемом периоде), а также объём и структура основных фондов на начало периода. В динамических межотраслевых моделях, помимо коэффициента прямых затрат, присущих статическим межотраслевым моделям, вводят специальные коэффициенты, характеризующие материально-вещественную структуру капитальных вложений.
По типу используемого математического аппарата динамические межотраслевые модели делятся на балансовые и оптимальные. Балансовые динамические межотраслевые модели могут быть представлены как в форме системы линейных уравнений, так и в форме линейных дифференциальных или разностных уравнений. Балансовые динамические межотраслевые модели различают также по лагу (разрыв во времени между началом строительства и пуском в эксплуатацию построенного объекта). Для оптимальных динамических межотраслевых моделей характерны наличие определённого критерия оптимальности, замена системы линейных уравнений системой неравенств, введение специальных ограничений по трудовым и природным ресурсам.
Динамические физические и виртуальные объекты существуют объективно. Это значит, что эти объекты функционируют в соответствии с некоторыми законами, независимо от того, знает ли и понимает ли их человек или нет. Например, для управления автомобилем вовсе не обязательно знать, как работает двигатель, что в нем происходит и почему это приводит к движению автомобиля, если нажимать на газ или поворачивать руль. Но если человек предполагает не управлять автомобилем, а сконструировать систему управления им, то знание и понимание процессов динамики уже совершенно необходимо.
Динамические объекты и их линейные модели плотно исследовались и анализировались на протяжении более двух столетий многими учеными и инженерами. Результаты этих исследований и анализа и представляются ниже качественно в концентрированном виде, так, как это воспринимается автором. Прежде всего, это относится к линейным моделям динамических систем, их классификации, описанию их свойств и области состоятельности.
Кроме того, далее обсуждаются и некоторые свойства нелинейных систем. Слова, термины "динамический", "динамичный" прочно и широко вошли в различные области знаний человека, используются и в быту, как эмоциональный эпитет энергичного движения в широком смысле этого слова, синоним быстрых изменений. В предлагаемой работе термин "динамический" будет использован в его узком и непосредственном значении, означающем "силовой", т.е. динамический объект - это объект, подверженный внешнему воздействию, приводящему к движению в широком смысле этого слова.
1. Динамические модели: понятие, виды
Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, значения физических величин в которых характеризуют состояние объекта. Объект способен реагировать на внешние воздействия изменением своего внутреннего состояния и выходных величин, характеризующих его состояние. Воздействие на объект, и его реакция в общем случае изменяются с течением времени, они наблюдаемы, т.е. могут быть измерены соответствующими приборами. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов.
Если вчитаться и вдуматься в приведенное выше нестрогое определение, можно увидеть, что отдельно динамический объект в "чистом" виде, как вещь в себе, не существует: для описания объекта модель должна содержать еще и 4 источника воздействий (генераторы):
- среду и механизм подачи на него этих воздействий
- объект должен иметь протяженность в пространств
- функционировать во времени
- в модели должны быть измерительные устройства.
Воздействием на объект может быть некоторая физическая величина: сила, температура, давление, электрическое напряжение и другие физические величины или совокупность нескольких величин, а реакцией, откликом объекта на воздействие, может быть движение в пространстве, например смещение или скорость, изменение температуры, силы тока и др.
Для линейных моделей динамических объектов справедлив принцип суперпозиции (наложения), т.е. реакция на совокупность воздействий равна сумме реакций на каждое из них, а масштабному изменению воздействия соответствует пропорциональное изменение реакции на него. Одно воздействие может быть приложено к нескольким объектам или нескольким элементам объекта.
Понятие динамический объект содержит и выражает причинно-следственную связь между воздействием на него и его реакцией. Например, между силой, приложенной к массивному телу, и его положением и движением, между электрическим напряжением, приложенным к элементу, и током, протекающим в нем.
В общем случае динамические объекты являются нелинейными, в том числе они могут обладать и дискретностью, например, изменять быстро структуру при достижении воздействием некоторого уровня. Но обычно большую часть времени функционирования динамические объекты непрерывны во времени и при малых сигналах они линейны. Поэтому ниже основное внимание будет уделено именно линейным непрерывным динамическим объектам.
Пример непрерывности: автомобиль, двигающийся по дороге - непрерывно функционирующий во времени объект, его положение зависит от времени непрерывно. Значительную часть времени автомобиль может рассматриваться как линейный объект, объект, функционирующий в линейном режиме. И только при авариях, столкновениях, когда, например, автомобиль разрушается, требуется описание его как нелинейного объекта.
Линейность и непрерывность во времени выходной величины объекта просто удобный частный, но важный случай, позволяющий достаточно просто рассмотреть значительное число свойств динамического объекта.
С другой стороны, если объект характеризуется процессами, протекающими в разных масштабах времени, то во многих случаях допустимо и полезно заменить наибыстрейшие процессы их дискретным во времени изменением.
Настоящая работа посвящена, прежде всего, линейным моделям динамических объектов при детерминированных воздействиях. Гладкие детерминированные воздействия произвольного вида могут быть генерированы путем дискретного, сравнительно редкого аддитивного действия на младшие производные воздействия дозированными дельта - функциями. Такие модели состоятельны при сравнительно малых воздействиях для весьма широкого класса реальных объектов. Например, именно так формируются сигналы управления в компьютерных играх, имитирующих управление автомобилем или самолетом с клавиатуры. Случайные воздействия пока остаются за рамками рассмотрения.
Состоятельность линейной модели динамического объекта определяется, в частности тем, что является ли его выходная величина достаточно гладкой, т.е. является ли она и несколько ее младших производных по времени непрерывными. Дело в том, что выходные величины реальных объектов изменяются достаточно плавно во времени. Например, самолет не может мгновенно переместиться из одной точки пространства в другую. Более того он, как и любое массивное тело, не может скачком изменить свою скорость, на это потребовалась бы бесконечная мощность. Но ускорение самолета или автомобиля может изменяться скачком.
Понятие динамический объект вовсе не всесторонне определяет физический объект. Например, описание автомобиля как динамического объекта позволяет ответить на вопросы, как быстро он разгоняется и тормозит, как плавно двигается по неровной дороге и кочкам, какие воздействия будут испытывать водитель и пассажиры машины при движении по дороге, на какую гору он может подняться и т.п. Но в такой модели безразлично, какой цвет у автомобиля, не важна его цена и др., постольку, они не влияют на разгон автомобиля. Модель должна отражать главные с точки зрения некоторого критерия или совокупности критериев свойства моделируемого объекта и пренебрегать второстепенными его свойствами. Иначе она будет чрезмерно сложной, что затруднит анализ интересующих исследователя свойств.
С дугой стороны, если исследователя интересует именно изменение во времени цвета автомобиля, вызываемое различными факторами, например солнечным светом или старением, то и для этого случая может быть составлено и решено соответствующее дифференциальное уравнение.
Реальные объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействия от некоторого источника, но и сами воздействуют на этот источник, противодействуют ему. Выходная величина объекта управления во многих случаях является входной для другого, последующего динамического объекта, которая также, в свою очередь, может влиять на режим работы объекта. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.
Часто, при решении многих задач, рассматривается поведение динамического объекта только во времени, а его пространственные характеристики, в случаях, если они непосредственно не интересуют исследователя, не рассматриваются и не учитываются, за исключением упрощенного учета задержки сигнала, которая может быть обусловлена временем распространения воздействия в пространстве от источника к приемнику.
Динамические объекты описываются дифференциальными уравнениями (системой дифференциальных уравнений). Во многих практически важных случаях это линейное, обыкновенное дифференциальное уравнение (ОДУ) или система ОДУ. Многообразие видов динамических объектов определяет высокую значимость дифференциальных уравнений как универсального математического аппарата их описания, позволяющего проводить теоретические исследования (анализ) этих объектов и на основе такого анализа конструировать модели и строить полезные для людей системы, приборы и устройства, объяснять устройство окружающего нас мира, по крайней мере, в масштабах макромира (не микро- и не мега-).
Модель динамического объекта состоятельна, если она адекватна, соответствует реальному динамическому объекту. Это соответствие ограничивается некоторой пространственно-временной областью и диапазоном воздействий.
Модель динамического объекта реализуема, если можно построить реальный объект, поведение которого под влиянием воздействий в некоторой пространственно-временной области и при некотором классе и диапазоне входных воздействий соответствует поведению модели.
Широта классов, многообразие структур динамических объектов может вызвать предположение, что все они вместе обладают неисчислимым набором свойств. Однако попытка охватить и понять эти свойства, и принципы работы динамических объектов, во всем их многообразии вовсе не столь безнадежна.
Дело в том, что если динамические объекты адекватно описываются дифференциальными уравнениями, а это именно так, то совокупность свойств, характеризующих динамический объект любого рода, определяется совокупностью свойств характеризующих его дифференциальное уравнение. Можно утверждать что, по крайней мере, для линейных объектов таких основных свойств существует довольно ограниченное и сравнительно небольшое число, а поэтому ограничен и набор основных свойств динамических объектов. Опираясь на эти свойства и комбинируя элементы, обладающие ими, можно построить динамические объекты с самыми разнообразными характеристиками.
Итак, основные свойства динамических объектов выведены теоретически из их дифференциальных уравнений и соотнесены с поведением соответствующих реальных объектов.
Динамический объект - это объект, воспринимающий изменяющиеся во времени внешние воздействия и реагирующий на них изменением выходной величины. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов. Иерархия объектов ограничена снизу простейшими моделями и опирается на их свойства.
Воздействием на объект, как и его реакцией, являются физические, измеряемые величины, это может быть и совокупность физических величин, математически описываемая векторами.
При описании динамических объектов с помощью дифференциальных уравнений неявно предполагается, что каждый элемент динамического объекта получает и расходует столько энергии (такую мощность), сколько ему требуется для нормальной работы в соответствии с его назначением по отклику на поступающие воздействия. Часть этой энергии объект может получать от входного воздействия и это описывается дифференциальным уравнением явно, другая часть может поступать от сторонних источников и в дифференциальном уравнении не фигурировать. Такой подход существенно упрощает анализ модели, не искажая свойств элементов и всего объекта. При необходимости процесс обмена энергией с внешней средой может быть подробно описан в явной форме и это будут также дифференциальные и алгебраические уравнения.
В некоторых частных случаях источником всей энергии (мощности) для выходного сигнала объекта является входное воздействие: рычаг, разгон массивного тела силой, пассивная электрическая цепь и др.
В общем случае воздействие может рассматриваться как управляющее потоками энергии для получения необходимой мощности выходного сигнала: усилитель синусоидального сигнала, просто идеальный усилитель и др.
Динамические объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействие от его источника, но и сами воздействуют на этот источник: например в классической механике это выражается принципом, сформулированном в третьем законе Ньютона: действие равно противодействию, в электротехнике напряжение источника есть результат установления динамического равновесия между источником и нагрузкой. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.
По существу, все элементы динамического объекта являются двунаправленными, как и сам объект по отношению к внешним объектам. Это следует из обобщения третьего закона Ньютона, сформулированного им для механики: сила противодействия тела равна силе воздействия на него другим телом и направлена навстречу ей, а в химии также формулируется в виде принципа Ле Шателье. Обобщая можно сказать: воздействие одного динамического элемента на другой встречает противодействие некоторого вида. Например, электрическая нагрузка источника напряжения противодействует ему током, изменяя значение напряжения на выходе источника. В общем случае противодействие нагрузки влияет на режим работы источника, и их поведение определяется в результате, если это возможно, переходом в некоторое динамическое равновесие.
Во многих случаях мощность источника воздействия значительно больше потребной входной мощности приемника, каковым является динамический объект. В этом случае динамический объект практически не влияет на режим работы источника (генератора) и связь может рассматриваться как однонаправленная от источника к объекту. Такая однонаправленная модель элемента, основывающаяся на рациональном физическом структурировании объекта, существенно упрощает описание и анализ системы. Собственно, многие технические объекты, хотя и далеко не все же, строятся как раз по такому принципу, в частности при проектировании систем для решения задач управления. В других случаях, например при решении задачи, когда требуется получение максимального кпд двигателя, противодействием пренебречь нельзя.
Детализируя структуру динамического объекта можно придти к элементарным, условно не упрощаемым объектам. Такие объекты описываются простейшими алгебраическими и дифференциальными уравнениями. Фактически такие элементы в свою очередь могут иметь сложную структуру, однако удобнее при моделировании воспринимать их как единое целое, свойства которого определяются этими, сравнительно простыми уравнениями, связывающими реакцию с воздействием.
1.1 Физические модели
Так называют увеличенное или уменьшенное описание объекта или системы. Отличительная характеристика физической модели состоит в том, что в некотором смысле она выглядит как моделируемая целостность.
Наиболее известным примером физической модели является копия конструируемого самолета, выполненная с полным соблюдением пропорций, скажем 1:50. На одном из этапов разработки самолета новой конструкции возникает необходимость проверить его основные аэродинамические параметры. С этой целью подготовленную копию продувают в специальной (аэродинамической) трубе, а полученные показания затем тщательно исследуют. Выгодность такого подхода совершенно очевидна. И потому все ведущие самолетостроительные компании используют физические модели подобного рода при разработке каждого нового летательного аппарата.
Часто в аэродинамическую трубу помещают уменьшенные копии многоэтажных зданий, имитируя при этом розу ветров, характерную для той местности, где предполагается их строительство. Пользуются физическими моделями и в кораблестроении.
1.2 Математические модели
Так называют модели, использующие для описания свойств и характеристик объекта или события математические символы и методы. Если некоторую проблему удается перенести на язык формул, то она сильно упрощается. Математический подход прост еще и потому, что он подчиняется вполне определенным жестким правилам, которые нельзя отменить указом или иным способом. Сложность нашей жизни как раз и состоит в том, что многое, что в ней случается, нередко свободно от условностей. Математика имеет дело с упрощенным описанием явлений. По существу, любая формула (или совокупность формул) представляет собой определенный этап в построении математической модели. Опыт показывает, что построить модель (написать уравнение) довольно легко. Трудно в этой модельной и следовательно, упрощенной форме суметь передать суть изучаемого явления.
Любой функциональный элемент реального объекта имеет свою структуру, его можно, как и весь объект, мысленно или физически разделить на взаимодействующие элементы. Элементарный динамический объект это рационально выбранный элемент реального объекта, условно считающийся неделимым, обладающий, как целое некоторым фундаментальным свойством, например инерцией, и с достаточной степенью точности описываемый простейшим алгебраическим или дифференциальным уравнением.
Важнейшее, фундаментальное свойство динамических объектов это их инерционность. Физически инерционность выражается в том, что объект не сразу, а постепенно реагирует на внешние воздействия, а в отсутствие внешнего воздействия стремится сохранить свое состояние и поведение. Математически инерция выражается в том, что выходная величина реального объекта является непрерывной во времени величиной. Более того, некоторые младшие производные выходной величины тоже должны быть непрерывными, они не могут изменяться скачком при ограниченных по мощности воздействиях, в том числе и изменяющихся скачком, ступенчато во времени.
Простейшие инерционные динамические объекты - кинедины. Это элементарные объекты, мысленно или физически вычленяемые из структуры сложного объекта и с достаточной степенью точности подчиняющиеся простейшим дифференциальным уравнениям различных порядков. Такие модели состоятельны, по крайней мере, в некоторой пространственно-временной области и в ограниченном диапазоне величин сигналов.
Математическое описание инерции динамического объекта, объекта, соответствующего некоторому дифференциальному уравнению, состоит в том, что воздействие сказывается на реакции объекта опосредовано, оно непосредственно влияет на ту или иную производную реакции по времени, или сразу на несколько из них. Это и приводит к тому, что реакция проявляется только с течением времени.
И действительно, такое описание соответствует поведению реальных объектов. Например, при мгновенной подаче некоторого, сравнительно малого, не меняющегося после подачи воздействия на элементарный объект второго порядка, например силы на инерционную массу, объект остается некоторое, пусть малое, время в том же состоянии, что и до подачи, имеет ту же скорость, что и ранее.
Но вторая производная, т.е. ускорение, прыгает скачком, пропорционально величине приложенной силы. И, поэтому, только с течением времени, а не сразу, наличие второй производной проявляется в изменении скорости, а следовательно, в последующем, и на положении тела в пространстве.
1.3 Аналоговые модели
Так называют модели, представляющие исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой.
Приведем два достаточно характерных примера.
Пример 1. График, иллюстрирующий соотношения между затраченными усилиями и результатами, является аналоговой моделью. График на рис. 1.1 показывает, как количество времени, отведенное студентом на подготовку к экзамену, влияет на его результат.
Рис. 1.1. График, иллюстрирующий соотношения между затраченными усилиями и результатами
Пример 2. Предположим, что нужно найти наиболее экономичный способ для регулярных известных поставок товаров в три города, построив для этого только один склад. Основное требование: место для склада должно быть таким, чтобы полные транспортные расходы были наименьшими (считается, что стоимость каждой перевозки равна произведению расстояния от склада до пункта назначения на общий вес перевозимых товаров и измеряется в тонна-километрах).
Наклеим карту местности на лист фанеры. Затем в месте нахождения каждого города пропилим сквозные отверстия, пропустим через них нити и привяжем к ним грузики, пропорциональные запросам товаров в этот город (рис. 1.2). Свяжем свободные концы нитей в один узел и отпустим. Под действием силы тяжести система придет в состояние равновесия. То место на листе фанеры, которое при этом займет узел, и будет соответствовать оптимальному расположению склада (рис. 1.3).
Замечание. Стоимость дорог, которые придется построить заново, мы для простоты рассуждений в расчет не принимаем.
Рис. 1.2. Карта местности на листе фанеры
Рис. 1.3. Оптимальное расположение склада
2. Построение математических моделей дискретных объектов
2.1 Модель народонаселения
Интересно, что построить математическую модель часто совсем нетрудно. Нередко для этого используются самые простые и легкообъяснимые предположения. Опишем, как это можно сделать, на одном почти реальном примере. Представим себе следующую картину. Середина XVIII в. центральная Европа, приход в глубинке, церковь, прихожане -- жители окрестных деревень, приходский священник замечает, что храм стал тесноват для богослужений: возросло число прихожан. Священник размышляет: если число прихожан будет увеличиваться и в будущем, то придется строить новую церковь, для чего понадобятся средства, и немалые.
Священник понимает, что срок, за который должен быть построен храм, и его размеры во многом зависят от того, как имено будет изменяться число окрестных жителей. И он решает попытаться рассчитать это. Попробуем и мы изложить возможный ход его рассуждений, пользуясь современными обозначениями и языком.
Обозначим через х количество прихожан к концу n-го года. Их численность через год, т.е. к концу (n + 1)-го года, естественно обозначить через хn+1. Тогда изменение численности за этот год можно описать разностью
Оно происходит по двум естественным причинам -- люди рождаются и умирают (для простоты будем считать, что вирус миграций эту местность тогда еще не поразил). Определить число родившихся и число умерших за год по приходским книгам особого труда не составляет. Подсчитывая число родившихся и умерших в разные годы, священник решает сопоставить полученные числа и d1,...,dk с общим числом прихожан за эти годы x1,..,xk, и замечает, что отношения x1,...,xk год от года различаются весьма мало. То же касается и отношений
.
Для простоты расчетов будем считать эти отношения постоянными и обозначим их через б и в соответственно. Тем самым число родившихся в n-м году оказывается равным , число умерших - вxn, а изменение численности по естественным причинам составляет +бxn - вxn.
В результате мы приходим к соотношению ?xn=бхn - вxn или подробнее:
xn+1=xn +бxn-вxn
Положим г=1 + б - в. Тогда интересующая нас формула примет вид
хn+1=гxn (1).
Модель построена.
Попробуем разобраться теперь с тем, что же получилось, т. е. проанализировать построенную модель. Возможны три случая:
1) г>1 (д=б-в>0 - рождается больше, чем умирает) и численность прихожан растет год от года,
2) г=1 (д=б-в=0 - умирает столько же, сколько рождается) и численность прихожан год от года остается неизменной,
3) г<0 (д=б-в<0 - умирает больше, чем рождается) и численность прихожан неуклонно снижается.
Так как побудительным мотивом для построения модели было желание узнать, как быстро будет расти число прихожан, начнем с рассмотрения случая 1.
Случай 1. Итак, численность прихожан растет. Но как, насколько быстро? Здесь самое время кратко вспомнить поучительную историю (печальную притчу) о безвестном изобретателе шахмат. Говорят, что игра очень понравилась богатому и всесильному магарадже, который тут же решил наградить изобретателя и щедро предложил выбрать вознаграждение ему самому. Тот, как рассказывают, смахнув фигуры с шахматной доски, положил на 1-ю клетку одно пшеничное зернышко, на 2-ю - два зернышка, на 3-ю - четыре зернышка, на 4-ю - восемь зернышек (рис. 2.1) и предложил магарадже, чтобы он отдал распоряжение слугам выкладывать зерна пшеницы на другие клетки шахматной доски по предложенному закону, т. е. так: 1,2,4,8,16,…,263.
Рис. 2.1. Задача о шахматной доске и награде магараджи
Магараджу эта простая просьба почти обидела, и он согласился выполнить ее далеко не сразу. Но изобретатель настаивал. Магараджа приказал. И слуги тут же кинулись исполнять это "легкое" задание. Нужно ли говорить, что выполнить распоряжение магараджи им не удалось. Дело в том, что общее количество зерен пшеницы на шахматной доске должно было быть равным 264 - 1, что намного превышает выращиваемое сейчас во всем мире за год. Закончим притчу совсем коротко: магараджа оказался в непривычном для себя положении - он прилюдно дал обещание и не смог его выполнить. Виновного, впрочем, тут же и нашли. Возможно, именно поэтому история и не сохранила имени изобретателя шахмат. Попробуем, однако, изобразить на графике, как быстро растет число зерен в каждой следующей клетке, для большей наглядности соединяя соседние точки (рис. 2.2).
Рис. 2.2-2.3. Экспоненциальное изменение численности
Правило, предложенное изобретателем шахмат, Xn+1=2xn является частным случаем формулы (1) при г=2 и, так же как и она, описывает закон, следуя которому мы получаем последовательность чисел, образующих геометрическую прогрессию. При любом г>1 картинка, иллюстрирующая изменение xn, имеет похожий вид - xn будет расти экспоненциально. В 1820 г. в Лондоне Т.Р. Мальтусом была опубликована работа "Principles of political economy considered with a view to their practical application" (в русском переводе - "Опыт о законе народонаселения ..." Т. 1-2. СПб., 1868), в которой, в частности, говорилось о том, что в силу биологических особенностей людей население имеет тенденцию размножаться по закону геометрической прогрессии,
xn=1=гxn, г>1,
в то время как средства существования могут увеличиваться лишь по закону арифметической прогрессии, yn+1=yn+d, d>0. Такое различие в скорости изменения величин, непосредственно связанных с проблемами выживаемости популяции (рис. 2.3), не могло остаться незамеченным и вызвало довольно жесткую критику и сильно политизированную полемику в соответствующих кругах. Попробуем извлечь из самого факта критики полезный для нас вывод об адекватности построенной модели (1). Разумеется, при попытке упрощенного описания ситуации некоторыми обстоятельствами приходится пренебрегать, считая их несущественными. Однако единого взгляда на то, что именно существенно, а что не очень, по-видимому, нет. Можно, например, не обращать внимания на то, что начался дождик. Но согласитесь, что одно дело пробежать под накрапывающим дождем сотню метров, и совсем другое - часовая прогулка под таким дождем без зонта. Нечто аналогичное мы наблюдаем и здесь: при расчете на 3-4 года вперед формула (1) работает достаточно хорошо, но долгосрочный прогноз, основанный на ней, оказывается ошибочным.
Важный вывод. Предлагая построенную или выбранную вами модель, вы непременно должны указать пределы, в которых ею можно пользоваться, и предупредить о том, что нарушение этих ограничений может привести (и, скорее всего, приведет) к серьезным ошибкам. Коротко говоря, у каждой модели есть свой ресурс. Покупая блузку или рубашку, мы привыкли к наличию меток, на которых указаны максимально допустимая температура глажения, дозволенные виды стирки и т. п. Это, конечно, ни в коей мере не означает, что вам запрещается, взяв докрасна раскаленный утюг, пройтись им раз-другой по ткани. Такое вы сделать можете. Но вот захотите ли вы носить блузку или рубашку после такого глажения? Случай 2. Численность населения не изменяется (рис. 2.4). Случай 3. Население вымирает (рис. 2.5).
Рис. 2.4. График народонаселения при неизменяющейся численности
Рис. 2.5. График народонаселения при убывающей численности
Мы умышленно весьма подробно остановились на описании модели народонаселения, во-первых, потому, что она является одной из первых моделей подобного рода, и, во-вторых, чтобы на ее примере показать, через какие основные этапы проходит решение задачи построения математической модели.
Замечание 1. Очень часто, описывая эту модель народонаселения, привлекают ее дифференциальный вариант: x'=дx (здесь х=x(t) - зависящая от времени численность популяции, х' - производная по времени, д - постоянная величина).
Замечание 2. При больших значениях х конкурентная борьба за средства существования приводит к уменьшению д, и эта жесткая модель должна быть заменена более мягкой моделью: x'=д(x)x, в которой коэффициент д зависит от численности населения. В простейшем случае эта зависимость описывается так:
д(x)=a-bx
где а и b - постоянные числа, а соответствующее уравнение принимает вид
x'=ax-bx2
И мы приходим к более сложной, так называемой логистической модели, которая описывает динамику популяции уже достаточно хорошо. Анализ логистической кривой (рис. 2.6) весьма поучителен, и его проведение может быть любопытно читателю. Логистическая модель хорошо описывает и другие процессы, например эффективность рекламы.
Рис. 2.6. Логистическая кривая
2.2 Модель хищник - жертва
Выше рассказывалось о беспрепятственном размножении популяции. Однако в реальных обстоятельствах популяция сосуществует с другими популяциями, находясь с ними в самых разных взаимоотношениях. Здесь мы коротко рассмотрим антагонистическую пару хищник - жертва (это может быть и пара рысь - заяц и пара божья коровка - тля) и попытаемся проследить, как может изменяться со временем численность обеих взаимодействующих сторон. Популяция жертвы может существовать сама по себе, в то время как популяция хищника -- только за счет жертвы. Обозначим численность популяции жертвы через х, а численность популяции хищника через у. В отсутствие хищника жертва размножается согласно уравнению x'=ax, a>0, а хищник в отсутствие жертвы вымирает по закону y'=-вy, в>0. Хищник съедает тем больше жертвы, чем ее больше и чем более многочислен он сам. Поэтому при наличии хищника численность жертвы меняется по закону
x'=ax-гxy, г>0
Съеденное количество жертвы способствует размножению хищника, что можно записать так: y'=-вy+дxy, д>0.
Таким образом, мы получаем систему уравнений
x'=ax-гxy
y'=-вy+дxy
причем x?0, y?0.
Модель хищник - жертва построена.
Как и в предыдущей модели, наибольший интерес для нас представляет точка равновесия (х*,у*), где х* и у* - отличное от нуля решение системы уравнений
ax-гxy=0
-вy+дxy=0
Или x(a-гy)=0, y(-в+дx)=0
Эта система получается из условия стабильности численности обеих популяций x'=0, y'=0
Координаты точки равновесия - она является точкой пересечения прямых
a-гy=0 (2)
-в+дx=0 (3)
- легко вычисляются:
, (рис. 2.7).
Рис. 2.7. Решение системы уравнений
Начало координат О(0,0) лежит в положительной полуплоскости относительно горизонтальной прямой, задаваемой уравнением (2), а относительно вертикальной прямой, задаваемой уравнением (3), в отрицательной полуплоскости (рис. 2.8). Тем самым первая четверть (а нас интересует только она, так как х>0 и у>0) разбивается на четыре области, которые удобно обозначить так: 1-(+,+), 2-(-,+), 3-(-,-), 4-(+,-).
Рис. 2.8. Разбиение области решений на квадранты
Пусть начальное состояние Q(x0,y0) находится в области IV. Тогда выполнены неравенства б-гy0>0, -в+дx0<0? из которых следует, что скорости x' и у' в этой точке должны быть разных знаков, x'>0, y'<0 и, значит, величина х должна возрастать, а величина убывать.
Подобным же образом анализируя поведение х и у в областях 2, 3 и 4, получим в итоге картину, изображенную на рис. 2.9.
Рис. 2.9. Изменение x и y по квадрантам
Тем самым начальное состояние Q приводит к периодическому колебанию численности, как жертвы, так и хищника, так что по прошествии какого-то времени система вновь возвращается в состояние Q (рис. 2.10).
Рис. 2.10. Цикличность колебаний численности хищника и жертвы
Как показывают наблюдения, несмотря на свою простоту, предложенная модель качественно верно отражает колебательный характер численности в системе хищник - жертва (рис. 2.11).
Рис. 2.11. Колебания систем Заяц - Рысь и Тля - Божья коровка
Реальные наблюдения. Вмешиваться в действия непонятных нам законов природы иногда довольно опасно - применение инсектицидов (если только они не уничтожают насекомых практически полностью) в конечном счете приводит к увеличению популяции тех насекомых, численность которых находится под контролем других насекомых-хищников. Случайно попавшая в Америку тля поставила под угрозу все производство цитрусовых. Вскоре туда же был завезен ее естественный враг - божья коровка, которая немедленно принялась за дело и сильно сократила популяцию тли. Чтобы ускорить процесс уничтожения, фермеры применили ДДТ, но в результате количество тли увеличилось, что, глядя на рис. 2.11, нетрудно предугадать.
2.3 Модель мобилизации
Под термином политическая, или социальная, мобилизация понимается вовлечение людей в партию или в число ее сторонников, в какое-либо общественное движение и т. п. Вследствие того что текущий уровень мобилизации тесно связан с прошлым ее уровнем, а будущая мобилизация зависит от сегодняшних успехов пропагандистской кампании, ясно, что при построении соответствующей модели необходимо учитывать временной фактор. Иными словами, нужно понимать, что искомая модель должна быть динамической.
Постановка задачи. Отразить логику изменения уровня мобилизации в данном регионе между двумя соседними моментами времени, скажем за месяц (за год, неделю, день и т. п.).
Построение модели. Примем за единицу ту часть населения, для которой мобилизация данного типа имеет смысл. Пусть Mn - доля мобилизованного населения в момент времени tn=n. Тогда доля немобилизованного населения будет равна 1-Mn (рис. 2.12).
Рис. 2.12. Соотношение мобилизованного и немобилизованного населения
За месяц уровень мобилизации может измениться по двум основным причинам:
1) часть населения удалось привлечь дополнительно; ясно, что эта величина тем больше, чем выше доля еще несагитированного населения на момент tn=n, и поэтому можно считать ее равной б(1-Мn), (здесь б>0 -- коэффициент агитируемости, постоянный для данного региона);
2) часть населения убыла (по разным причинам); ясно, что это уменьшает долю сагитированного населения тем больше, чем выше была эта доля на момент tn=n, и поэтому потери, связанные с выбытием, можно считать равными (здесь в>0 - постоянный коэффициент выбытия). Подчеркнем, что числовые параметры б и в отражают пропорциональное изменение интересов, взглядов и намерений соответствующих частей населения рассматриваемого региона. Таким образом, изменение уровня мобилизации за единицу времени равно разности между долей населения, привлеченного дополнительно, и долей выбывшего сагитированного населения:
Это и есть уравнение процесса мобилизации. Модель мобилизации построена.
Последнее соотношение легко преобразуется к следующему виду:
Mn+1=б+гMn, (4)
где г=1-б-в.
Замечание. Вспомогательный параметр г не может быть больше 1 вследствие того, что исходные параметры б и в положительны. Полученное уравнение (4) называется линейным разностным уравнением с постоянными коэффициентами.
С уравнениями подобного рода можно сталкиваться в разных, по большей части простейших вариантах.
Один из них (при г=1) описывает правило, по которому каждый член последовательности, начиная со второго, получается из предыдущего путем сложения с некоторым постоянным числом: Mn+1=б+Mn, т. е. арифметрическую прогрессию.
Второй (при б=0) описывает правило, по которому каждый член последовательности, начиная со второго, получается из предыдущего путем умножения на некоторое постоянное число: Mn+1=гMn, т. е. геометрическую прогрессию.
Предположим, что начальная доля привлеченного населения М0 известна. Тогда уравнение (4) легко решается (для определенности считаем, что ). Имеем:
Применение модели.
Попробуем проанализировать возможности этой (построенной на основании простейших соображений) модели.
Начнем со случая |г|<1.
Для этого перепишем последнее соотношение в виде , где через M* обозначена следующая величина:
.
Замечание. Тот же результат получается, если в уравнении (4) положить Mn+1=Mn=M*.
В самом деле, тогда получим M*=б+гM*, откуда
.
Найденная величина M* не зависит от начального значения M0, выражается через исходные параметры б и в по формуле
,
а следовательно подчиняется условию 0<M*<1.
Для придания полученной формуле большей наглядности вновь воспользуемся методом координат.
На рис. 2.13 показаны области возможных значений вспомогательного параметра г, на рис. 2.14 - исходных параметров б и в, а на рис. 2.15-17 - соответствующие им наборы значений Мn при разных n, М0 и М* (для удобства восприятия соседние точки (n,Мn) и (n+l,Mn+1) соединены прямолинейными отрезками).
Случай г<1 проиллюстрирован на рис. 2.18.
Конечно, на этих рисунках представлена качественная картина. Но ничто не мешает взять вполне конкретные значения величин М0, б и в и подробно рассчитать соответствующую ситуацию.
Рис. 2.13.области возможных значений г 2.14.исходные параметры б и в
Рис. 2.15 - 2.16
Рис. 2.17 2.18. Случай г<1
Например, для , , имеем
, , , ,…(рис. 2.19)
Рис. 2.19. Мобилизация при , ,
Интересно отметить, что построенная модель, несмотря на простоту подходов и рассуждений, довольно хорошо отражает реальные процессы. Так, предложенная модель мобилизации использовалась для изучения динамики числа голосов, поданных за демократическую партию в Лейк Кантри (США) в 1920-1968 гг., и оказалось, что она достаточно хорошо описывает качественные характеристики процесса мобилизации.
2.4 Модель гонки вооружений
Рассмотрим конфликтную ситуацию, в которой могут оказаться две страны, для определенности назовём страны X и Y.
Обозначим через x=x(t) расходы на вооружение страны X и через y=y(t) расходы на вооружение страны Y в момент времени .
Предположение 1. Страна X вооружается, опасаясь потенциальной угрозы войны со стороны страны Y, которая в свою очередь, зная о росте затрат на вооружение страны X, также увеличивает свои расходы на вооружение. Каждая страна изменяет скорость роста (или сокращения) вооружений пропорционально уровню затрат другой. В простейшем случае это можно описать так:
x'=бy,
y'=вx,
где б и в - положительные постоянные.
Однако написанные уравнения имеют очевидный недостаток - уровень вооружения ничем не лимитируется. Поэтому правые части этих уравнений нуждаются в естественной корректировке.
Предположение 2.
Чем больше текущий уровень расходов страны на оборону, тем меньше скорость его роста. Это позволяет внести в предыдущую систему следующие изменения:
x'=бy-гx
y'=вx-дy
если же эта страна не угрожает существованию данной. Обозначим соответствующие претензии через a и b (а и b -- положительные постоянные). В случае если постоянные a и b отрицательны, их можно назвать коэффициентами доброй воли. Основываясь на всех трех предположениях, в результате получаем следующую систему уравнений:
x'=бy-гx+a
y'=вx-дy+b
Модель гонки вооружений построена.
Решением полученной системы являются функции x(t) и y(t), определяемые для данных начальных условий x0?0 и y0?0 (начального состояния гонки вооружений).
Проанализируем полученную систему, предполагая, что уровни затрат обеих стран на вооружение не зависят от времени (являются стационарными). Это означает, что x'=0, y'=0, или по иному:
бy-гx+a=0
вx-дy+b=0
Рассмотрим конкретный пример.
Пример. Пусть система гонки вооружений имеет следующий вид:
x'=3y-5x+15
y'=3x-4y+12
Если скорости изменения величин x и y равны нулю, то эти величины с необходимостью связаны условиями:
(a): 3y-5x+15=0
(b): 3x-4y+12=0
Каждое из этих уравнений описывает прямую на плоскости (x,y), и точка пересечения этих прямых лежит в первой четверти (рис. 2.20)
Рис. 2.20.прямая заданная уравнением(a) 2.21. прямая заданная уравнением(b)
Прямая, заданная уравнением (а), разбивает плоскость, и начальная точка O(0,0) лежит в положительной полуплоскости. В рассматриваемом случае то же справедливо и для прямой, заданной уравнением (б) (рис. 2.21).
Тем самым первая четверть (а нас интересует только она, так как всегда х?0 и у?0) разбивается на четыре области, которые удобно обозначить так: I-(+,+), II-(-,+), III-(-,-), IV-(+,-).
Пусть начальное состояние (х0,у0) находится в области I. Тогда выполнены неравенства:
(а): 3у0-5x0+15>0,
(б): 3х0-4у0+12>0,
из которых следует, что скорости x' и у' в этой точке положительны: х'>0, у'>0 и, значит, обе величины (х и у) должны возрастать (рис. 2.22).
Рис. 2.22. возрастание x и y
Таким образом, с течением времени в области I решение приходит в точку равновесия.
Подобным же образом анализируя возможные расположения начального состояния в областях II, III и IV, получим в итоге, что стабильное состояние (баланса сил) достигается независимо от начальных уровней вооружения стран X и Y. Отличие состоит лишь в том, что если переход к стационарному состоянию из области I сопровождается одновременным увеличением уровней вооруженности, то из области III - их одновременным снижением; для областей II и IV иная ситуация - одна из сторон наращивает свое вооружение, в то время как другая разоружается.
Возможны и другие случаи (рис. 2.23).
Рис. 2.23. другие случаи
Интересно отметить, что возможности построенной модели проверялись на реальной ситуации - гонке вооружений перед первой мировой войной. Проведенные исследования показали, что, несмотря на свою простоту, эта модель достаточно достоверно описывает положение дел в Европе в 1909-1913 гг.
В завершение этого раздела процитируем высказывание Т. Саати об этой модели: "Модель представляется гораздо более убедительной, если вместо вооружений провести на ней изучение проблем угрозы, поскольку люди реагируют на абсолютный уровень враждебности, проявляемый по отношению к ним другими, и испытывают чувство тревоги в степени, пропорциональной уровню враждебности, которую они испытывают сами".
Заключение
В наше время наука уделяет все большое внимание вопросам организации и управления, это приводит к необходимости анализа сложных целенаправленных процессов под углом зрения их структуры и организации. Потребности практики вызвали к жизни специальные методы, которые удобно объединять под названием «исследование операций». Под этим термином понимается применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности.
Целью исследования операций является выявление наилучшего способа действия при решение той или иной задачи. Главная роль при этом отводится математическому моделированию. Для построения математической модели необходимо иметь строгое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые определяют область допустимых значений. Цель и ограничения должны быть представлены в виде функций.
В моделях исследования операций переменные, от которых зависят ограничения и целевая функция, могут быть дискретными (чаще всего целочисленными) и континуальными (непрерывными). В свою очередь, ограничения и целевая функция делятся на линейные и нелинейные. Существуют различные методы решения данных моделей, наиболее известными и эффективными из них являются методы линейного программирования, когда целевая функция и все ограничения линейные. Для решения математических моделей других типов предназначены методы динамического программирования (которые были рассмотрены в данном курсовом проекте), целочисленного программирования, нелинейного программирования, многокритериальной оптимизации и методы сетевых моделей. Практически все методы исследования операций порождают вычислительные алгоритмы, которые являются итерационными по своей природе. Это подразумевает, что задача решается последовательно (итерационно), когда на каждом шаге (итерации) получаем решение, постепенно сходящиеся к оптимальному решению.
Итерационная природа алгоритмов обычно приводит к объемным однотипным вычислениям. В этом и заключается причина того, что эти алгоритмы разрабатываются, в основном, для реализации с помощью вычислительной техники.
Построение модели опирается на значительное упрощение изучаемой ситуации и, следовательно, к получаемым на ее основе выводам нужно относиться достаточно осторожно - модель может не все. Вместе с тем даже весьма грубая на вид идеализация нередко позволяет глубже вникнуть в суть проблемы. Пробуя как-то влиять на параметры модели (выбирать их, управлять ими), мы получаем возможность подвергнуть исследуемое явление качественному анализу и сделать выводы общего характера.
Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование многошаговых процессов, зависящих от времени. Так как в задачах динамического программирования процессы зависят от времени, то находится ряд оптимальных решений для каждого этапа, обеспечивающих оптимальное развитие всего процесса в целом.
Используя поэтапное планирование, динамическое программирование позволяет не только упростить решение задач, но и решать те к которым нельзя применить методы математического анализа. Конечно, стоит отметить, что этот метод достаточно трудоёмкий при решении задач с большом количеством переменных.
Список используемой литературы
1. Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособ. - М.: Высшая школа, 2009 г.
2. Бережная Е.В., Бережной В.И. Математические методы моделирования. - М.: Дело и Сервис, 2009 г
3. Интрилигатор М. Математические методы оптимизации и экономическая теория. - М.: Айрис-Пресс, 2008 г.
4. Курбатов В.И., Угольницкий Г.А. Математические методы социальных технологий. - М.: Вузовская книга, 2011 г.
5. Монахов А.В. Математические методы анализа экономики. - СПб.: Питер, 2007 г.
6. Орлова И.В., Половников В.А. Экономико-Математические методы и модели. - М.: Вузовский учебник, 2008 г.
7. Попов И.И., Партыка Т.Л. Математические методы. - М.: ИНФРА-М, 2007 г.
8. Попова Н.В. Математические методы. - М.: Анкил, 2007 г.
Размещено на Allbest.ru
Подобные документы
Рассмотрение основных подходов к построению математических моделей процесса. Сопряженное уравнение для простейшего уравнения диффузии и структура алгоритмов для решения задач. Использование принципа двойственности для представления линейного функционала.
курсовая работа [711,0 K], добавлен 03.08.2012Разработка проекта системы автоматического управления тележкой, движущейся в боковой плоскости. Описание и анализ непрерывной системы, создание ее математических моделей в пространстве состояний и модели "вход-выход". Построение графиков реакций объекта.
курсовая работа [1,7 M], добавлен 25.12.2010Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.
контрольная работа [69,9 K], добавлен 09.10.2016Приемы построения математических моделей вычислительных систем, отображающих структуру и процессы их функционирования. Число обращений к файлам в процессе решения средней задачи. Определение возможности размещения файлов в накопителях внешней памяти.
лабораторная работа [32,1 K], добавлен 21.06.2013Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.
реферат [28,1 K], добавлен 20.08.2015Суть компьютерного моделирования. Система, модели и имитационное моделирование. Механизмы продвижения времени. Компоненты дискретно-событийной имитационной модели. Усиление и ослабление факторов сопутствующих активности гейзера, динамическая модель.
курсовая работа [776,2 K], добавлен 28.06.2013Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.
задача [656,1 K], добавлен 01.06.2016Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.
курсовая работа [1,3 M], добавлен 09.11.2013Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.
курсовая работа [862,0 K], добавлен 28.05.2013Особенности математических моделей и моделирования технического объекта. Применение численных математических методов в моделировании. Методика их применения в системе MathCAD. Описание решения задачи в Mathcad и Scilab, реализация базовой модели.
курсовая работа [378,5 K], добавлен 13.01.2016