Выдающиеся математики

Биографии и описание деятельности великих математиков: Паскаля, Бернулли, Дезарга, Ньютона, Ферма, Декарта, Эйлера, Монжа, Фурье, Лагранжа, Виета, Лейбница. Алгебраические методы в геометрии. Аналитическая геометрия Ферма. Аналитическая геометрия Декарта.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 14.01.2011
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Якоб Бернулли

Якобу Бернулли принадлежат значительные достижения в теории рядов, дифференциальном исчислении и теории чисел, где его именем названы числа с некоторыми определенными свойствами.

БЕРНУЛЛИ Якоб (27.12.1654, Базель, -- 16.8.1705, там же), (1654-1705), брат Иоганна Бернулли; профессор математики Базельского университета (с 1687).

По обычаю молодых людей того времени после окончания университета он отправился путешествовать, служил домашним учителем в Генуе, а с 1683 года приступил к чтению лекций по экспериментальной физике в Базеле, где позже стал профессором математики.

Его лекции слушали брат Иоганн, племянник Николай, будущий член Петербургской Академии наук математик и механик Я.Герман, отец будущего великого математика Пауль Эйлер.

Как-то внимание Якоба Бернулли привлекла статья Г.В.Лейбница в журнале «Труды ученых» за 1684 год о новом дифференциальном исчислении. Якоб обратился к автору с письмом, желая выяснить непонятные места в статье, но немецкий ученый получил его лишь через несколько лет. За это время братья Якоб и Иоганн сами разобрались в тонкостях нового исчисления.

Затем Иоганн сообщил Лейбницу о том, что поставил задачу о брахистохроне (кривой наискорейшего спуска): «По какой траектории должна двигаться в вертикальной плоскости под действием силы тяжести материальная точка, чтобы путь от точки А до точки В пройти в кратчайшее время?»

Он посоветовал Иоганну опубликовать ее, чтобы остроумнейшие математики за год смогли дать свое решение. Иоганн так и сделал. Решение предложили трое: Якоб Бернулли, французский математик маркиз Лопиталь и тот, кто, пожелав остаться неизвестным, напечатал ответ в английском журнале анонимно.

Однако наилучшим оказался вариант Якоба. Иоганн Бернулли сформулировал и задачу о кривой, представляющей кратчайшее расстояние между двумя точками на заданной поверхности, -- геодезической линии.

Якобу Бернулли принадлежат значительные достижения в теории рядов, дифференциальном исчислении и теории чисел, где его именем названы числа с некоторыми определенными свойствами.

Но главная заслуга ученого в том, что он сформулировал и доказал частный случай важнейшей теоремы теории вероятностей -- закона больших чисел. Он был опубликован после смерти Якоба Бернулли в его книге «Искусство предположений» (1713).

Через 200 лет та часть книги, что относилась к закону больших чисел, была переведена на русский язык Я.В.Успенским и издана в Петербурге под редакцией академика А.А.Маркова.

ФРАНСУА ВИЕТ

Искусство, которое я излагаю, ново или по крайней мере было настолько испорчено временем искажено влиянием варваров, что я счел нужным придать ему совершенно новый вид.

Ф.Виет

Виет Франсуа (1540-13.12. 1603) родился в городе Фонтене ле-Конт провинции Пуату, недалеко от знаменитой крепости Ла-Ро-шель. Получив юридическое образование, он с девятнадцати лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. Знал астрономию и математику и все свободное время отдавал этим наукам.

Преподавая частным образом астрономию дочери одной знатной клиентки, Виет пришел к мысли составить труд, посвященный усовершенствованию птолемеевской системы. Затем он приступил к разработке тригонометрии и приложению ее к решению алгебраических уравнений. В 1571 году Виет переехал в Париж и там познакомился с математиком Пьером Рамусом. Благодаря своему таланту и отчасти благодаря браку своей бывшей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником короля Франции Генриха III, а после его смерти-Генриха IV.

Главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Виета они не только восхищали, в них он видел большой изъян, заключающийся в трудности понимания из-за словесной символики: Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся. Нельзя было записывать и, следовательно, начать в общем виде алгебраические сравнения или какие-нибудь другие алгебраические выражения. Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Поэтому необходимо было доказать, что существуют такие общие действия над всеми числами, которые от этих самих чисел не зависят.  Виет   и его последователи установи, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка. Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Значит, их можно обозначать какими-либо отвлеченными знаками. Виет  это и сделал. Он не только ввел свое буквенное исчисление, но сделал принципиально новое открытий, поставив перед собой цель изучать не числа, а действия над ними. Такой способ записи позволил Виету   сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно за это Виета называют "отцом" алгебры, основоположником буквенной символики.

Из других открытий Виета следует отметить выражение для синусов и косинусов кратных дуг через sin x и cos x. Эти знания тригонометрии Виет с успехом применял как в алгебре при решении алгебраических уравнений, так и в геометрии, например, при решении с помощью циркуля и линейки знаменитой задачи Аполлония Пергского о построении круга, касательного к трем данным кругам. Гордясь найденным решением, Виет называл себя Алоллонием Гальским (Галлией во времена древнего Рима называли современную Францию).

Нельзя сказать, что во Франции о Виете ничего не знали. Громкую славу он получил при Генрихе III, во время франко-испанской войны. Испанские инквизиторы изобрели очень сложную тайнопись (шифр), которая все время изменялась и дополнялась. Благодаря такому шифру воинствующая и сильная в то время Испания могла свободно переписываться с противниками французского короля даже внутри Франции, и эта переписка всё время оставалась неразгаданной. После бесплодных попыток найти ключ к шифру король обратился к Виету. Рассказывают, что Виет две недели подряд дни и ночи просидев за работой, все же нашел ключ к испанскому шифру. После этого неожиданно для испанцев Франция стала выигрывать одно сражение за другим. Испанцы долго недоумевали. Наконец им стало известно, что шифр для французов уже не секрет и что виновник его расшифровки - Виет. Будучи уверенными в невозможности разгадать их способ тайнописи людьми, они обвинили Францию перед папой римским и инквизицией в кознях дьявола, а Виет был обвинен в союзе с дьяволом и приговорен к сожжению на костре. К счастью для науки, он не был выдан инквизиции.

В конце 16 столетия голландский математик Андриан ван-Роумен, известный, пожалуй, тем, что вычислил число  Пи с восемнадцатью верными знаками, решил бросить вызов всем математикам мира. Он разослал во все европейские страны уравнение 45-й степени:

x45 - 45x43 + 945x41 - 12300x39 +... + 95634x5 - 3795x3 + 45x = a,

французским математикам он решил это уравнение не посылать, считая, что там нет способных справиться с задачей: Декарт в то время еще не родился, Пьера Рамуса в 1572 убили в Варфоломеевскую ночь, о других математиках не было слышно. Так французские математики не смогли принять вызов. Больше всего было ущемлено самолюбие Генриха IV. - И все же у меня есть математик! - воскликнул король. - Позовите Виета! В приемную короля вошел пятидесятитрехлетний седоволосый советник короля Франсуа Виет. Он тут же, в присутствие короля, министров и гостей, нашел один корень предложенного уравнения. Виет увидел, что а есть сторона правильного 15-угольника, вписанного в круг радиуса 1, а по коэффициентам второго и последнего членов заключил, что х есть хорда 1/45 этой дуги, как оно и было на самом деле.

Король ликовал, все поздравляли придворного советника. На следующий день Виет нашел еще 22 корня уравнения, описываемые выражением: при n=1,2,...,22. Этим он и ограничился, так как остальные 22 корня - отрицательные, а Виет не признавал ни отрицательных, ни мнимых корней.

После такого успеха Виета составитель злополучного уравнения Роумен стал ревностным почитателем его.

В последние годы жизни Виет занимал важные посты при дворе короля Франции. В мемуарах некоторых придворных Франции есть указание, что Виет был женат, что у него была дочь, единственная наследница имения, по которому Виет звался сеньор де ла Биготье. В придворных новостях маркиз Летуаль писал: "...14 февраля 1603 г. господин Виет, рекетмейстер, человек большого ума и рассуждения и один из самых ученых математиков века умер ... в Париже. Ему было более шестидесяти лет". Подозревают, что Виет был убит.

Несмотря на огромное желание и упорные занятия, книгу, которую назвал “Искусство анализа, или Новая алгебра”.  Виет всё же не завершил. Но главное было написано. И это главное определило развитие всей математики Нового времени.

Готфрид Лейбниц

Лейбниц (Leibniz) Готфрид Вильгельм (1.07.1646, Лейпциг, - 14.11.1716, Ганновер), немецкий философ-идеалист, математик, физик и изобретатель, юрист, историк, языковед. Изучал юриспруденцию и философию в Лейпцигском и Йенском университетах. В 1672 отправился с дипломатической миссией в Париж, а через четыре года возвратился в Германию, состоя в последующие 40 лет на службе у ганноверских герцогов, сначала в качестве придворного библиотекаря, затем - герцогского историографа и тайного советника юстиции. В 1700 стал первым президентом созданного по его инициативе Берлинского научного общества. В 1711, 1712 и 1716 встречался с Петром I, разработал ряд проектов по развитию образования и государственного управления в России. Вел обширную переписку почти со всеми крупнейшими учеными, а также политическими деятелями.

В философии Лейбниц явился завершителем философии XVII в., предшественником немецкой классической философии. Его философская система сложилась к 1685 как итог двадцатилетней эволюции, в процессе которой Лейбниц критически переработал основные идеи Демокрита, Платона, Августина, Декарта, Гоббса, Спинозы и др. Лейбниц стремился синтезировать все рациональное в предшествующей философии с новейшим научным знанием на основе предложенной им методологии, важнейшими требованиями которой были универсальность и строгость философских рассуждений. Совершенство действительного мира он понимал как «гармонию сущности и существования»: оптимальность отношений между разнообразием существующих вещей и действий природы и их упорядоченностью; минимум средств при максимуме результата. Следствиями последнего онтологического принципа является ряд других принципов: принцип единообразия законов природы, или всеобщей взаимосвязи, закон непрерывности, принцип тождества неразличимых, а также принципы всеобщего изменения и развития, простоты, полноты и др.

В духе рационализма XVII в. Лейбниц различал мир умопостигаемый, или мир истинно сущего (метафизическая реальность), и мир чувственный, или только являющийся (феноменальный) физический мир. Реальный мир, по Лейбницу, состоит из бесчисленных психических деятельных субстанций, неделимых первоэлементов бытия - монад, которые находятся между собой в отношении предустановленной гармонии. Гармония (взаимно однозначное соответствие) между монадами была изначально установлена Богом, когда тот избрал для существования данный «наилучший из возможных миров». В силу этой гармонии, хотя ни одна монада не может влиять на другие (монады как субстанции не зависят друг от друга), тем не менее развитие каждой из них находится в полном соответствии с развитием других и всего мира в целом. Это происходит благодаря заложенной Богом способности монад представлять, воспринимать, или выражать и отражать, все другие монады и весь мир. Деятельность монад состоит в смене восприятий (перцепций) и определяется индивидуальным «стремлением» (аппетицией) монады к новым восприятиям. Хотя вся эта деятельность исходит из самой монады, она в то же время есть развертывание изначально заложенной в монаде индивидуальной программы, «полного индивидуального понятия», которое во всех подробностях Бог мыслил, прежде чем сотворил данный мир. Таким образом, все действия монад полностью взаимосвязаны и предопределены. Монады образуют восходящую иерархию сообразно тому, насколько ясно и отчетливо они представляют мир. В этой иерархии особое место занимают монады, которые способны не только к восприятию, перцепции, но и к самосознанию, апперцепции и к которым Лейбниц относил души людей.

Мир физический, как считал Лейбниц, существует только как несовершенное, чувственное выражение истинного мира монад, как феномен познающего объективный мир человека. Однако, поскольку физические феномены в конце концов порождаются стоящими за ними реальными монадами, Лейбниц считал их «хорошо обоснованными», оправдывая тем самым значимость физических наук. В качестве таких «хорошо обоснованных» феноменов ученый рассматривал пространство, материю, время, массу, движение, причинность, взаимодействие, как они понимались в физике и механике его времени.

В физике Лейбниц развивал учение об относительности пространства, времени и движения. Он установил в качестве количественной меры движения «живую силу» (кинетическую энергию) - произведение массы тела на квадрат скорости, в противоположность Декарту, который считал мерой движения произведение массы на скорость - «мертвую силу», как назвал ее Лейбниц. Использовав отчасти результаты Гюйгенса, Лейбниц открыл закон сохранения «живых сил», явившийся первой формулировкой закона сохранения энергии, а также высказал идею о превращении одних видов энергии в другие. Исходя из философского принципа оптимальности всех действий природы, Лейбниц сформулировал один из важнейших вариационных принципов физики - «принцип наименьшего действия» (позднее - принцип Мопертюи). Ему принадлежит также ряд открытий в специальных разделах физики: в теории упругости, теории колебаний, в частности открытие формулы для расчета прочности балок и т. д.

В логике Лейбниц развил учение об анализе и синтезе, впервые сформулировал закон достаточного основания, ему принадлежит также принятая в современной логике формулировка закона тождества. В его работе «Об искусстве комбинаторики», написанной в 1666, предвосхищены некоторые моменты современной математической логики; Лейбниц выдвинул идею применения в логике математической символики и построений логических исчислений, поставил задачу логического обоснования математики, предложил использовать бинарную систему счисления для целей вычислительной математики. Лейбниц впервые высказал мысль о возможности машинного моделирования человеческих функций; ввел термин «модель».

В математике важнейшей заслугой Лейбница является разработка (наряду с Ньютоном и независимо от него) дифференциального и интегрального исчисления. Первые результаты были получены Лейбницем в 1675 под влиянием Гюйгенса и на основе работ Паскаля, Декарта, Валлиса и Меркатора. Систематический очерк дифференциального исчисления был впервые опубликован в 1684, интегрального - в 1686. Здесь давались определения дифференциала и интеграла, были введены знаки для дифференциала d и интеграла приводились правила дифференцирования суммы, произведения, частного, любой постоянной степени, функции от функции (инвариантность первого дифференциала), правила отыскания и различения (с помощью второго дифференциала) экстремальных точек кривых и отыскание точек перегиба, устанавливался взаимно обратный характер дифференцирования и интегрирования. Применяя свое исчисление к ряду задач механики (о циклоиде, цепной линии, брахистохроне и др.), Лейбниц наряду с Гюйгенсом и братьями Бернулли вплотную подходит к созданию вариационного исчисления (1686-96). В дальнейших работах Лейбниц указал (1695) формулу для многократного дифференцирования произведения (формула Лейбница) и правила дифференцирования ряда важнейших трансцендентных функций, положил начало (1702-03) интегрированию рациональных дробей. Лейбниц широко пользовался разложением функций в бесконечные степенные ряды, установил признак сходимости знакочередующегося ряда, дал решение в квадратурах некоторых типов обыкновенных дифференциальных уравнений. Лейбниц ввел термины «дифференциал», «дифференциальное исчисление», «дифференциальное уравнение», «функция», «переменная», «постоянная», «координаты», «абсцисса», «алгебраические и трансцендентные кривые», «алгоритм» (в смысле, близком к современному) и др. Хотя предпринятые Лейбницем попытки логического обоснования дифференциального исчисления нельзя признать успешными, его ясное понимание существа новых аналитических методов и всесторонняя разработка аппарата исчисления способствовали тому, что именно его вариант исчисления во многом определил дальнейшее развитие математического анализа. Кроме анализа, Лейбниц сделал ряд важных открытий в других областях математики: в комбинаторике, алгебре (начала теории определителей), в геометрии, где он заложил основы теории соприкосновения кривых (1686), разрабатывал одновременно с Гюйгенсом теорию огибающих семейства кривых (1692-94), выдвинул идею геометрических исчислений.

В работе «Протогея» (1693) Лейбниц высказал мысль об эволюции Земли и обобщил собранный им материал в области палеонтологии. В биологию Лейбниц ввел идею целостности органических систем, принцип несводимости органического к механическому; эволюцию он понимал как непрерывное развертывание преформированных зародышей. В психологии ученый выдвинул понятие бессознательно «малых перцепций» и развил учение о бессознательной психической жизни.

В языкознании Лейбниц создал теорию исторического происхождения языков, дал их генеалогическую классификацию, развил учение о происхождении названий. Лейбниц явился одним из создателей немецкого философского и научного лексикона.

Основные философские сочинения: «Рассуждение о метафизике» (1685), «Новая система природы» (1695), «Новые опыты о человеческом разуме» (1704), «Теодицея» (1710), «Монадология» (1714). Основные математические сочинения: «Об истинном отношении круга к квадрату» (1682), «Новый метод максимумов и минимумов» (1684), «О скрытой геометрии и анализе неделимых...» (1686). Физические воззрения Лейбница изложены, в частности, в работах «Доказательство памятной ошибки Декарта» (1686), «Очерк динамики» (1695), политические и юридические идеи - в сочинениях «Трактат о праве...» (1667), «Христианнейший Марс...» (1680), «Кодекс международного дипломатического права» (1693) и др.

Жан Лерон Даламбер

По Даламберу, мышление не является свойством материи, а душа имеет независимое от материи существование. В противоположность другим французским просветителям он утверждал, что нравственность не обусловлена общественной средой.

Жан Лерон Даламбер получил своё имя по названию маленькой церкви на ступени которой он был подброшен матерью. Жена бедного стекольщика заменила ему мать. Воспитатели Жана хотели, чтобы он был юристом или врачом, однако он стал математиком и философом.

Став знаменитостью и гордостью французской науки, Даламбер вознаградил стекольщика и его жену, следя за тем, чтобы они не оказались в нужде, и всегда с гордостью называл их своими родителями.

Жан Лерон Даламбер один из главных деятелей «Энциклопедии» и ее редакторов. С 1751 г. вместе с Д. Дидро участвовал в её создании (1-й том вышел в 1751--52 гг.). Написал введение к ней, являющееся одним из самых блестящих образцов «научного стиля». В философии Даламбер был сторонником сенсуализма и противником декартовской теории врожденных идей. Однако сенсуализм его не был последовательно материалистическим. По Даламберу, мышление не является свойством материи, а душа имеет независимое от материи существование. В противоположность другим французским просветителям он утверждал, что нравственность не обусловлена общественной средой. Даламбер признавал бога как образующую субстанцию. Критика непоследовательного сенсуализма Даламбера была дана в работах Дидро. Основное сочинение в философии- «Элементы философии» (1759). Опираясь на систему Ф. Бэкона, классифицировал науки, положив начало современному понятию «гуманитарные науки».

В "Трактате о динамике" (1758 г.) излагает свой принцип рассмотрения механической системы со связями, сводящий любую задачу динамики к задаче равновесия,. В 1754 г. избран во Французскую академию. В 1757 г. он покинул редакцию «Энциклопедии». В середине 1760-х гг. Даламбер был приглашён российской императрицей Екатериной II в качестве воспитателя наследника престола, но отказался принять приглашение.

Жозеф Луи Лагранж

Лагранж Жозеф Луи (25.1.1736, Турин, -- 10.4.1813, Париж), французский математик и механик, член Парижской АН (1772). Родился в семье обедневшего чиновника. Самостоятельно изучал математику.

В 19 лет Лагранж уже стал профессором в артиллерийской школе Турина. В 1759 избран членом Берлинской АН, а в 1766--87 был её президентом. В 1787 он переехал в Париж; с 1795 профессор Нормальной школы, с 1797 -- Политехнической школы.

Наиболее важные труды Лагранжа относятся к вариационному исчислению, к аналитической и теоретической механике. Опираясь на результаты, полученные Л. Эйлером, он разработал основные понятия вариационного исчисления и предложил общий аналитический метод (метод вариаций) для решения вариационных задач.

Лагранж стремился установить «простые» и «всеобщие» принципы механики. При этом исходил из характерных для прогрессивных учёных 18 в. представлений, что только такие принципы могут быть истинными, соответствующими объективной реальности.

Лагранжу принадлежат также выдающиеся исследования по различным вопросам математического анализа (формула остаточного члена ряда Тейлора, формула конечных приращений, теория условных экстремумов), теории чисел, алгебре (симметрической функции корней уравнения, теория и приложения непрерывных дробей), по дифференциальным уравнениям (теория особых решений, метод вариации постоянных), по интерполированию, математической картографии, астрономии и пр.

Алгебраические методы в геометрии

Применение алгебры в геометрии имело к началу XVII в. долгую историю. Еще древние вавилоняне решали многие задачи на прямоугольные треугольники, выражая искомые отрезки, как корни численных квадратных уравнений; аналогичные приемы употреблялись впоследствии неоднократно. В классической!

Греции важным средством геометрического исследования, в частности конических сечений, служила геометрическая алгебра, в которой место вычислений занимали построения отрезков.

Бурные успехи символической и числовой алгебры в XVI в. явились основой гораздо более обширных приложений алгебраического метода в геометрии, приведших к созданию новой аналитической геометрии. Первоначально работы в этом направлении не выходили за пределы традиционных постановок и решений вопросов, иногда довольно сложных. Большое число таких задач было рассмотрено

Виетом, за которым последовали и другие, например Марин Геталдич (Гетальди, 1566--1627), уроженец югославского города Дубровник (Рагуза), в то время бывшего самостоятельной республикой. Ученик Хр. Клавия и хороший знаток греческих авторов, Гетальди испытал особенно сильное влияние Виета, с которым познакомился в бытность в Париже. В «Собрании различных задач» (Variorum problematum collectio, Veneliae, 1607) и посмертно изданном труде «О математическом анализе и синтезе» (De resolutione et compositione mathematica, Romae, 1630) Гетальди средствами алгебры Виета решает разнообразные задачи на деление отрезков, построение треугольников и так называемые вставки (ср. т. I, стр. 84); по большей части его задачи выражаются уравнениями первой или второй степени относительно искомого неизвестного отрезка. В некоторых случаях применяется чисто геометрическое решение. Упомянем античную задачу о вставке между продолжением стороны квадрата и ближайшей перпендикулярной стороной отрезка данной длины, продолжение которого проходит через вершину квадрата, не лежащую на названных сторонах. Гетальди отнес задачу к тем, которые не относятся к алгебре (sub algebram non cadunt), и решил ее геометрически. Данная задача привлекла внимание и других ученых. Жирар (1629) выразил ее уравнением четвертой степени и показал, как связан выбор знаков перед радикалами, входящими в его корни, с положением частей искомого отрезка. Декарт (1637) рассмотрел ее с целью привести пример уравнения четвертой степени, распадающегося на два квадратных (коэффициенты которых, между прочим, квадратично иррациональны относительно исходных коэффициентов). Попутно Декарт указал, как от более или менее удачного выбора неизвестной зависит сравнительная простота уравнения.

Эти соображения Декарта подробнее развиты во «Всеобщей арифметике» Ньютона.

Оригинальное решение принадлежит еще Гюйгенсу.

Алгебраическим решением геометрических задач занимались, как видно, очень многие. К уже названным можно добавить, например, имя английского алгебраиста Вильяма Отреда (1574--1660), на книге которого, озаглавленной, подобно одному из сочинений ал-Каши, «Ключ математики» (Clavis mathematicae, Londini, 1631), отразилось несомненное влияние «Собрания различных задач» Гетальди.

Аналитическая геометрия

Описанная алгебраическая трактовка вопросов геометрии подготовляла почву для создания аналитической геометрии, предметом которой является уже нс только нахождение отдельных отрезков, выражаемых корнями уравнений с одним неизвестным, но изучение свойств различных геометрических образов, прежде всего алгебраических линий и поверхностей, выражаемых уравнениями с двумя или более неизвестными или координатами.

Координаты появились еще в древности, притом в различных формах, между собой непосредственно не связанных. С одной стороны, это были географические координаты, именовавшиеся долготой и широтой, причем положение пунктов земной поверхности, изображенной в виде прямоугольника, характеризовалось парой чисел. Сходными были астрономические координаты, служившие для определения

положения светил на небесной сфере. Другой вид координат представляли собой отрезки, зависимости между которыми, так называемые симптомы (см. т. I, 130), выражали определяющие свойства этих кривых. В этом случае речь шла не о числовых координатах любых точек с отсчетом от фиксированного меридиана и параллели, а об отрезках диаметров и хорд, связанных с точками рассматриваемой фигуры.

Своеобразной разновидностью координат были отрезки широт и долгот в теории изменения форм Орема. Здесь не было ни числовых координат любых точек, ни «симптомов», выраженных средствами геометрической алгебры; словесно сформулированная зависимость между широтой и долготой формы изображалась плоской линией.

Координатные отрезки древнегреческой геометрии стали известны в Европе частью по арабским сочинениям, но главным образом по трудам Архимеда и особенно Аполлония. Параллельные хорды или полухорды, сопряженные некоторому диаметру, Аполлоний называл, если перевести с греческого, «по порядку проведенными линиями», а отрезки этого диаметра от его конца до хорды -- «отсеченными на диаметре по порядку проведенными (линиями)» (на рис. 6 соответственно у и x). В своем упоминавшемся ранее латинском издании «Конических сечений» (Венеция, 1566) Федориго Коммандино первые выражения передал оборотом ordinatim applicatae, т. е. «по порядку приложенные»

(т. е. направленные)[2], а второе -- quae ab ipsis ex diametro ad verticem abscinduntur, т. е. «которые отсекаются ими на диаметре от вершины». Отсюда берут начало термины abscissa, т. е. «отсеченная», ordinata и applicata, которые, впрочем, укоренились не сразу. Слово «абсцисса», встречавшееся в смысле отрезка у различных авторов, например Кавальерп (1635), становится техническим термином координатной геометрии в 1668 г. у Микеланджело Риччи (1619--1692) ii особенно у Лейбница, начиная с рукописей 1673 г. Ферма и Декарт в своих основоположных сочинениях по аналитической геометрии (1636--1637; писали еще об «отрезках диаметра». Слово «ордината» в нашем смысле применял другой переводчик па латынь «Конических сечений» -- Франчсско Мавролико. Ферма пользовался термином applicata, Декарт -- appliquee par ordre, т. е. французским переводом ordinatim applicata, но также (в письме 1638 г.) словом ordonnee, которое незадолго перед тем в 1637 г. употребил в своем курсе П. Эригон (в латинском тексте 1644г.--ordinata); затем им стал регулярно пользоваться Лейбниц.

В середине XVIII в. слово «ордината» начинает вытеснять в геометрии на плоскости слово «аппликата». Обе координаты первоначально назывались неизвестными величинами, как у Ферма, или неопределенными, как у Декарта; слово «координаты» ввел в 1692 г. Лейбниц, имея в виду уже любые криволинейные координаты. Но еще и позднее понятие о координатах связывалось с отрезками диаметров и хордами плоских кривых. Так обстоит, например, дело в статьях «Abscissa, die Abscisse» и «Ordinatae, ordinatim applicatae, die Ordinaten» «Математического словаря» (Mathematisches Lexicon, Leipzig, 1716) Xp. Вольфа (ср. стр. 35).

Термин «ось», который у Аполлония относился к взаимно перпендикулярным сопряженным диаметрам, употребил в более широком смысле И. Барроу (1670).

Обозначение начальной точки буквой О восходит к ее наименованию origine -- «начало», данному Ф. Лагиром в 1679 г.; двадцатью годами ранее Я. де Витт писал об initium immutabile, неподвижном начале. Декарт еще говорил о точке, с которой начинаются вычисления. Вернемся от истории терминологии к истории геометрических методов и идей.

Аналитическая геометрия Ферма

К разработке начал новой аналитической геометрии независимо друг от друга и одновременно приступили оба крупнейших французских математика XVII в.-- Ферма и Декарт. Небольшое «Введение в изучение плоских и телесных мест» (Ad locos pianos et solidos isagoge) Ферма было написано несколько ранее 1637 г., но при жизни Ферма распространялось через Мерсепна и других только в рукописном виде. Напомним, что «плоские и телесные места» -- термины греческой геометрии -- означали прямые и окружности и соответственно эллипсы, параболы и гиперболы. Работа написана в обозначениях Виета с соблюдением однородности уравнений.

Ферма формулирует принцип аналитической геометрии следующим образом: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины (quantitates ignotae), налицо имеется место, и конец одной из них описывает прямую или же кривую линию... Для установления уравнений удобно расположить обе неизвестные величины под некоторым заданным углом (который мы большей частью принимаем прямым) и задать положение и конец одной из величин»

Как мы видим, под неизвестными величинами (координатами) Ферма понимает прямолинейные отрезки: первую из них он всякий раз обозначает NZ и алгебраически буквой А, а вторую соответственно ZI и Е.

Затем по порядку рассматриваются различные плоские и телесные места.

Уравнение прямой, проходящей через начальную точку, Ферма выводит в форме

D на А равно В на Е,

т. е. dx = by (на рис. 7 нанесена лишь часть прямой NI, так как Ферма пользуется положительными координатами). К этому случаю приводится общее уравнение первой степени (с указанным ограничением) и несколько далее однородное уравнение второй степени, причем здесь говорится лишь об одной из двух возможных прямых. Первое приведение по существу состоит в преобразовании координат, именно в параллельном сдвиге вдоль горизонтальной оси: от уравнения вида

с - dx = by Ферма переходит к d (r - х) = by

, где dr = с.

Идею преобразования координат путем параллельного переноса системы Ферма более отчетливо выражает в следующих примерах:

установив сначала, что в прямоугольной системе уравнение окружности с центром в начальной точке есть b2 - x2 = у2, он правильно характеризует общее уравнение окружности и для образца преобразует к основной форме уравнение

b2 - 2dx = у2 + 2.

Для этого он производит дополнение до квадрата

p1 - (х + d)2 = (у + r)2, где р2 = r2 + b2 + d2,

затем пишет снова x вместо x + d и y вместо у + r и получает

p2 - x2 = у2.

Следует заметить все же, что Ферма обходит молчанием вопрос об отрицательных координатах, какими оказываются координаты центра (-d, -r) в данной задаче (ибо d и r у него положительные). Разумеется, построить центр для него не представляло труда и в этом случае.

Основные уравнения конических сечений представляют собой у Ферма непосредственное выражение в терминах алгебры их свойств, известных по труду Аполлоиня. Для параболы это уравнения x2 = dy и симметричное у2 = dx, для эллипса (b2- x2)/y2 = const (указывается, что в случае непрямого координатного угла кривая будет эллипсом и при const = 1), для гиперболы (b2 + x2)/y2 =const. Любопытно, что на рисунке в последнем случае изображены обе ветви гиперболы, хотя опять-таки об отрицательных координатах ничего не сказано.

Кроме того, приводится уравнение равносторонней гиперболы ху=с. Все это распространяется на соответствующие уравнения, дополненные линейными членами.

На частном примере уравнения b2 - 2x2 = 2xy + у2 Ферма разбирает и наиболее трудный случай, когда группа старших членов содержит и член с произведением координат. Его выкладки и построения соответствуют переходу к новой системе координат X, Y с прежним началом и осью ординат и с осью абсцисс, образующей угол 45° со старой. В этой системе Х =

х, Y = x + у, так что (2b2 -- X

2)/Y2 = 2 и фигура есть эллипс.

Изложив все это, Ферма писал: «Таким образом мы коротко и ясно изложили все, что оставили невыясненным древние относительно плоских и телесных мест»

На самом деле был сделан лишь первый шаг к созданию нового типа геометрии, которая, между прочим, получила свое нынешнее наименование лишь в самом конце XVIII в.[5]

Аналитическая геометрия Декарта

«Введение» Ферма, долгое время остававшееся в рукописи, не нашло того широкого распространения, какое получила «Геометрия» Декарта, изданная в 1637г. О влиянии «Введения» на Декарта не может быть речи. Мы говорили уже, что все основные идеи «всеобщей математики», как в алгебраической, так и в геометрической части, имелись у ее творца не позднее 1632 г.

Изложение аналитической геометрии у Декарта во многом отличается от данного Ферма. В одном оно уступает, ибо разбросано по всем трем книгам «Геометрии» и даже во второй из них, содержащей наиболее важные элементы новой дисциплины, не имеет систематического характера, как во «Введении». Но в других отношениях геометрия Декарта имела решительные преимущества. Не говоря уже о том, что Декарт применял более развитую символику, что его изложение было доступнее и богаче примерами, он выдвинул несколько общих идей и предложений, весьма существенных для последующего.

Один из основных вопросов для Декарта заключался в следующем: какие линии служат предметом геометрии? Ответ определялся верой Декарта в то, что единственным общим методом математики является алгебраический. Сначала этот ответ формулируется в кинематических выражениях: геометрические линии -- это те, которые «описаны непрерывным движением или же несколькими такими последовательными движениями. пз которых последующие вполне определяются им предшествующими.-- ибо этим путем всегда можно точно узнать их меру»

[6]. Напротив, из геометрии, т. е. собственно всеобщей математики, исключаются механические линии, описываемые «двумя отдельными движениями, между которыми и существует никакого отношения, которое можно было бы точно измерить»[7]. Примеры механических линий--спираль и квадратриса: в качестве примера геометрических приводятся кривые, описываемые некоторым шарнирным механизмом, число звеньев которого можно неопределенно увеличивать. Этот механизм, по идее сходный смезолабием предложенным Эратосфеном в III в. до н. э. для построения двух средних пропорциональных, Декарт изобрел между 1619 и 1621 гг.: в третьей части «Геометрии» показано, как можно с его помощью строить любое число средних пропорциональных между двумя данными отрезками

а : x1 = x1 : x2 = x2 : х3 = ... = xn : b.

Уравнения описываемых этим прибором линий

r2 (x2 + у2)2n-1 = x4n (n = 0,1, 2,...)

Декарт не привел ни в общем виде, ни для частных значений п.

Кинематическое образование линий являлось отправным пунктом геометрии Декарта и применяется в ней неоднократно. Конечно, данная им при этом кинематическая характеристика геометрических линий как кривых, описываемых одним или несколькими непрерывными движениями, последовательно определяющими друг друга, не вполне отчетлива, так же как и заявление, что для проведения всех таких линий «нужно только то предположение, что две или несколько линий можно перемещать вдоль друг друга и что их пересечения образуют другие линии»

[8]. Но в этих утверждениях, по сути дела, Декарт предвосхитил уже упоминавшуюся важную теорему английского ученого А. Кемпе (1876), согласно которой посредством плоских шарнирных механизмов можно описать дуги любых алгебраических кривых и нельзя описать ни одной трансцендентной. Свой кинематический способ деления линий на геометрические и механические Декарт тотчас облекает в более ясную аналитическую форму и здесь же предлагает классификацию первых. «Все точки линий,-- пишет он,-- которые можно назвать геометрическими, т. е. которые подходят под какую-либо точную и определенную меру, обязательно находятся в некотором отношении ко всем точкам прямой линии, которое может быть выражено некоторым уравнением, одним и тем же для всех точек данной линии»[9]. В этом поистине замечательном по глубине месте своего сочинения Декарт вводит и метод прямолинейных координат и понятие об уравнении кривой, а вместе с тем понятие о функции как аналитическом выражении, составленном из «неопределенных» отрезковx и у. Несколько перед тем Декарт объяснил, как описывать кривую или, вернее, строить любое число ее точек, вычисляя значения х по данным значениям у,-- первой координатой у него служила у.

В 1684 г. Лейбниц назвал геометрические кривые Декарта алгебраическими, а механические -- трансцендентными, мотивируя отказ от терминологии Декарта тем, что и механические линии не подлежат исключению из геометрии.

Непосредственно за изложенными общими соображениями Декарт приводит первую общую классификацию алгебраических кривых в зависимости от степени их уравнений, отнеся к роду п кривые с уравнениями степени 2п -- 1 и 2п.

Классификация требовалась прежде всего для всеобщей математики Декарта (стр.30), а также была нужна в аналитической геометрии. Предложенное Декартом разделение кривых по родам, себя не оправдавшее, мотивировалось тем, что, по его мнению, кривые с уравнением степени 2п вообще не сложнее, чем с уравнением степени 2п -- 1. Все трудности, связанные с четвертой степенью, писал он, приводятся к третьей, а трудности, связанные с шестой степенью,-- к пятой и т. д. Общепринятой классификацией плоских кривых по порядкам мы обязаны Ньютону.

Но классификация кривых в прямолинейных координатах по родам или порядкам имеет смысл, если род или порядок кривой не зависит от выбора координатной системы.

Это было Декарту ясно, и он, правда мимоходом, но вполне отчетливо, сформулировал фундаментальное предложение об инвариантности рода кривой при замене одной системы прямолинейных координат другой: «Действительно, хотя для получения более короткого и удобного уравнения и нужен весьма тщательный выбор, но все же, какими бы прямую и точку ни взяли, всегда можно сделать так, чтобы линия оказалась того же самого рода: это легко доказать»

[10]. Впрочем, доказательство не приводится, да и формулы линейного преобразования координат у Декарта еще отсутствовали.

В качестве первого примера Декарт выводит уравнение линии ЕС, описанной точкой пересечения линейки GL и неопределенно продолженной стороны CNK плоской прямолинейной фигуры NKL, сторона которой KL движется вдоль данной прямой ВА, заставляя вращаться вокруг точки G линейку, неизменно проходящую при этом через точку L. Приняв GA , перпендикуляр к ВА, равным а, KL = b, NL =с, выбрав АВ за ось х и точку А за начало, Декарт обозначает «неопределенные и неизвестные величины» СВ = у, ВА = х. Тогда на основании подобия треугольников СВК и NLK, с одной стороны, и CBL и GAL -- с другой, быстро выводится уравнение линии ECG

уу = су - ху + ау - ас,

так что эта линия первого рода и, как указывает без доказательства Декарт, гипербола (пример этот подробно разобрали комментаторы латинского издания «Геометрии»).

Страница первого издания «Геометрии» Р. Декарта (1637): начало вывода уравнения линии ЕС

Заменяя прямую CNK другими линиями, можно получать таким образом бесконечное множество кривых. Так, если CNK есть окружность с центром L, то будет описана конхоида (несомненно, что прием Декарта является как раз обобщением античного определения конхоиды), а если CNK есть парабола с диаметром KB, то возникает кривая второго рода, именно та, которую Ньютон впоследствии назвал трезубцем (ср. далее стр. 108). Вообще, заявляет Декарт, если образующая кривая имеет род п, то описанная линия будет рода п -)- 1. Это одна из немногих ошибок Декарта, который не довел, видимо, до конца легкие, по его собственным словам, вычисления. На самом деле, если в подвижной системе координат СВ = у, BL = х', уравнение линии CNK есть f(x',y) = 0, то кривая ECG имеет в прежних координатах уравнение

Неточность Декарта показал на частном примере еще Ферма. В рассмотренном только что примере нарисованы две взаимно перпендикулярные координатные оси, хотя и не в обычном для нас положении. Однако чаще всего Декарт, так же как Ферма и ближайшие поколения их последователей, чертил только одну ось с начальной точкой и указывал направление других координат, вообще говоря наклонных. Отрицательные абсциссы lie рассматривались, что иногда приводило к неточным или неполным чертежам. Эти замечания не относятся к Ньютону или Лейбницу. но правильное различение знаков координат и применение обеих осей стало обычным делом уже в XVIII в.

Силу своего метода Декарт затем демонстрирует на предложенной ему Я. Гоолем задаче Паппа о геометрическом месте к 2п или 2n - 1 прямым, которое определяется следующим образом: даны 2п (или 2n - 1) прямых, требуется найти геометрическое место таких точек, чтобы произведение отрезков, приведенных от них под данными углами к п из этих прямых, находилось в данном отношении к произведению аналогичных отрезков. Проведенных к остальным п (или n - 1) прямым. Древние знали, что при п = 2 геометрическое место есть коническое сечение, но не оставили анализа и этого случая: случай же n > 2 остался нерассмотренным. Если мы запишем уравнение прямых в виде аkх + bkу + ck = 0, то длины проведенных к ним отрезков dk пропорциональны левым частям этих уравнений, и для нас отсюда ясно, что уравнение места будет, вообще говоря, кривой порядка п. Декарт, получив выражения для dk в выбранной им косоугольной координатной системе из геометрических соображений, приходит к тому же общему результату.

Более подробно он рассмотрел случаи n = 2 и п = 3. Это прежде всего место к трем или четырем прямым, исследование которого дает ему повод исследовать уравнение второго порядка, весьма общего, хотя и не самого общего вида. Пусть данные прямые суть АВ, AD, EF и GH , причем углы, образуемые с ними отрезками СВ, CD, CF и СH, проведенными из точек С искомого геометрического места, определяемого условием CB - -CF = CD - CH, известны (рис. 8). Декарт принимает одну из данных и одну из проведенных линий, именно АВ и ВС, за оси А В = х, ВС = у и обозначает данные длины отрезков ЕА = k, AG = l. Данными являются также углы треугольников на рис. 8, а значит, отношения их сторон

АВ : BR = z : b, CR : CD = z : с

и т. д., где z, b, с, ... суть данные отрезки (Декарт не вводит синусы углов). После этого нее нужные отрезки выражаются через x , у, z, b, с, ..., k,l, линейно относительно х и у:

CB = y, ,

а условие CB·CF = CD·CH выражается уравнением второй степени без свободного члена, решение которого относительно у, после введения некоторых сокращенных обозначений, дает

Однородность полученного уравнения объясняется принятыми для отношений сторон выражениями и, в сущности, не была в глазах Декарта обязательной (ср. стр. 42), но представляла в данном случае то удобство, что в принципе позволяла сразу строить одни отрезки по другим. В приводимом несколько далее числовом примере однородность относительно буквенных величин не соблюдается в отличие от примера Ферма, в алгебре примыкавшего к Виету (ср. стр. 102).

Опираясь на теоремы I книги «Конических сечений» Аполлония, Декарт показывает, что полученное уравнение принадлежит коническому сечению, а в особых случаях, когда радикал обращается в нуль или корень извлекается нацело, оказывается прямой линией: в самостоятельном виде уравнение прямой отсутствует и о «вырождении» кривой второго порядка в пару прямых ничего не говорится. В ходе анализа выясняется, при каких знаках коэффициентов получаются парабола, гипербола и эллипс, в частности окружность, и определяются положение и форма конического сечения -- в случае параболы вершина, диаметр и «прямая сторона»[11], а в случае центральных кривых--центр вершины, «прямая сторона» и диаметры.

Здесь же Декарт разбирает числовой пример, беря ЕА = 3, AG = 5,

АВ = BR и т. д., а угол ABR равным 60°, так что уравнение есть

уу = 2у -- ху + 5x -- хх: кривая при этом оказывается окружностью. Общее заключение гласит, что к первому роду принадлежат круг, парабола, гипербола и эллипс. Прямая не упоминается, -- ее принадлежность к первому роду подчеркнул Дебон, который рассмотрел также случай, когда в уравнении нет членов с х2 и у2, но есть ху, оставленный Декартом в стороне.

Вслед за тем Декарт изучает еще место к пяти прямым и специально случай, в котором четыре прямые суть эквидистанты АВ, IH, ED, GF, а пятая GA к ним перпендикулярна (рис. 9), причем CF·CD·CH = СВ·СМ·а, где а -- расстояние между соседними эквидистантами. Здесь появляется первое в истории аналитической геометрии уравнение кривой третьего порядка. Обозначив СВ = у, СМ = х, Декарт находит у3 -- 2ay2 -- аау + 2а3 = аху, т. е. уравнение трезубца (см. стр. 106), и показывает, что эта кривая CEG может быть, как он утверждал ранее, описана пересечением параболы CKN, диаметр которой KL = а движется по АВ, и линейки GL , вращающейся вокруг точки G и постоянно проходящей через точку L

Он не упускает из виду, что искомым местом служит также кривая NIo, описанная пересечением GL с другой ветвью параболы (HKN ), можно взять и сопряженные линии cEGc и пI0, получающиеся, если подвижная парабола обращена вершиной в другую сторону. Чертеж в «Геометрии» недостаточно отчетливо изображает вторую часть трезубца, который состоит из двух отдельных линий, имеющих каждая -- в терминологии Ньютона -- гиперболическую ветвь с асимптотой АВ и параболическую ветвь, лишенную асимптоты. Как и должно быть, кривая пересекает на чертеже горизонтальную ось при значениях у = -- а, у = а, у = 2а, но точка перегиба у части, лежащей справа от асимптоты, не обозначена.

Большое место занимают в «Геометрии» исследование оптических овалов, рассматриваемых в биполярных координатах, и проведение нормалей. Вторая книга сочинения завершается краткими замечаниями о возможности распространения метода на пространственные кривые посредством проектирования их точек на две взаимно перпендикулярные плоскости и заявлением: «Я полагаю теперь, что ничего непропустил из начал, необходимых для познания кривых линий»

Конечно, в этих словах Декарта, как и в приведенной выше авторской оценке «Введения» Ферма, было несомненное преувеличение. Но действительно, перед геометрией раскрывались невиданно широкие перспективы. Историки науки немало спорили о том, имелась ли у Аполлония аналитическая геометрия и было ли творчество Ферма и Декарта в этой области новаторским. Ответ зависит от определения термина «аналитическая геометрия», который, как отмечалось в другой связи, понимается по-разному. Несомненно, что оба ученых чрезвычайно многим обязаны были древним и что в саму теорию конических сечений они не внесли каких-либо новых теорем, а также не построили ее в чисто аналитическом плане. И вместе с тем Декарт и Ферма закладывали фундамент поистине новой геометрии, хотя «симптомы» Аполлония и соответствовали буквенным уравнениям кривых второго порядка.


Подобные документы

  • Анализ роли математики в оценке количественных и пространственных взаимоотношений объектов реального мира. Трактовка и обоснование математических теорем Ферма, Ролля, Лагранжа, Коши и Лопиталя. Обзор биографии, деятельности и трудов великих математиков.

    курсовая работа [467,9 K], добавлен 08.04.2013

  • Основные законы проективной геометрии. Понятие двойного отношения, параллельности и бесконечности. Теорема Дезарга и теорема Паскаля. Пространственная интерпретация теоремы Дезарга. Стереометрия помогает планиметрии. Окружность переходит в окружность.

    курсовая работа [866,1 K], добавлен 05.12.2013

  • Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.

    реферат [32,3 K], добавлен 14.07.2004

  • Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация [1,1 M], добавлен 20.09.2015

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат [25,9 K], добавлен 30.04.2011

  • Геометрия как раздел математики, изучающий пространственные структуры, отношения и их обобщения. Планиметрия, стереометрия, проективная геометрия. История развития науки. Исследование свойств плоских фигур. Сущность понятий "полупрямая", "треугольник".

    презентация [1,1 M], добавлен 16.10.2014

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

    статья [16,4 K], добавлен 17.10.2009

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат [18,3 K], добавлен 24.05.2012

  • Утверждение великого французского математика Пьера Ферма, получившее название "Великая теорема Ферма". Элементарные алгебраические преобразования многочленов. Коэффициенты полиномов Чебышева и формулы Абеля. Система наименьших вычетов по модулю K.

    книга [150,6 K], добавлен 07.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.