Выдающиеся математики

Биографии и описание деятельности великих математиков: Паскаля, Бернулли, Дезарга, Ньютона, Ферма, Декарта, Эйлера, Монжа, Фурье, Лагранжа, Виета, Лейбница. Алгебраические методы в геометрии. Аналитическая геометрия Ферма. Аналитическая геометрия Декарта.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 14.01.2011
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

61

Выдающиеся математики

Блез Паскаль

Паскаль (Pascal) Блез (19.06.1623, Клермон-Ферран, - 19.08.1662, Париж), французский религиозный философ, писатель, математик и физик. Родился в семье высокообразованного юриста, занимавшегося математикой и воспитывавшего своих детей под влиянием педагогических идей М. Монтеня, рано проявил выдающиеся математические способности, войдя в историю науки как классический пример отроческой гениальности.

Первый математический трактат Паскаля «Опыт теории конических сечений» (1639, издан 1640) являлся развитием трудов Ж. Дезарга, содержал одну из основных теорем проективной геометрии - «Паскаля» теорему. В 1641 (по другим сведениям, в 1642) Паскаль сконструировал суммирующую машину. К 1654 закончил ряд работ по арифметике, теории чисел, алгебре и теории вероятностей (опубликованных в 1665). Круг математических интересов Паскаля был весьма разнообразен. Паскаль нашел общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число (трактат «О характере делимости чисел»), способ вычисления биномиальных коэффициентов, сформулировал ряд основных положений элементарной теории вероятностей («Трактат об арифметическом треугольнике», опубликованный в 1665, и переписка с П. Ферма). В этих работах Паскаль впервые точно определил и применил для доказательства метод математической индукции. Труды Паскаля, содержащие изложенный в геометрической форме интегральный метод решения ряда задач на вычисление площадей фигур, объемов и площадей поверхностей тел, а также др. задач, связанных с циклоидой, явились существенным шагом в развитии анализа бесконечно малых. Теорема Паскаля о характеристическом треугольнике послужила одним из источников для создания Г. Лейбницем дифференциального и интегрального исчисления.

Вместе с Г. Галилеем и С. Стевином Паскаль считается основоположником классической гидростатики: он установил ее основной закон, принцип действия гидравлического пресса, указал на общность основных законов равновесия жидкостей и газов. Опыт, проведенный под руководством Паскаля (1648), подтвердил предположение Э. Торричелли о существовании атмосферного давления.

Работа Паскаля над проблематикой точных наук в основном относится к 1640-50-м гг. Разочаровавшись в «отвлеченности» этих наук, Паскаль обращается к религиозным интересам и философской антропологии. Сблизившись с представителями янсенизма, он с 1655 ведет полумонашеский образ жизни в янсенистской обители Пор-Руаяль-де-Шан, вступив в энергичную полемику по вопросам религиозной этики с иезуитами; плодом этой полемики стали «Письма к провинциалу» (1657) - шедевр французской сатирической прозы. В центре занятий Паскаля в последние годы жизни - попытка «оправдания» христианства средствами философской антропологии. Этот труд не был закончен; афористические наброски к нему после смерти Паскаля в «исправленном» виде вышли в свет под заглавием «Мысли г. Паскаля о религии и о некоторых других предметах» (1669). Только текстологическая работа XIX-XX вв. восстанавливает подлинный текст «Мыслей».

Место Паскаля в истории философии определяется тем, что это первый мыслитель, который прошел через опыт механистического рационализма XVII в. и со всей остротой поставил вопрос о границах «научности», указывая при этом на «доводы сердца», отличные от «доводов разума», и тем предвосхищая последующую иррационалистическую тенденцию в философии. Выведя основные идеи христианства из традиционного синтеза с космологией и метафизикой аристотелевского или неоплатонического типа, а также с политической идеологией монархизма (так называемый «союз трона и алтаря»), Паскаль отказывается строить искусственно гармонизированный теологический образ мира; его ощущение космоса выражено в словах: «это вечное молчание безграничных пространств ужасает меня». Сосредоточенность Паскаля на антропологической проблематике предвосхищает понимание христианской традиции у С. Кьеркегора и Ф. М. Достоевского.

Паскаль сыграл значительную роль в формировании французской классической прозы, его влияние испытали Ф. Ларошфуко и Ж. Лабрюйер, М. Севинье и М. Лафайет.

Даниил Бернулли

Даниил Бернулли родился 29 января 1700г. в Гронингене (Голландия), где его отец преподавал математику в университете. В 1705г. семья переехала в город Базель (Швейцария), где Иоганн Бернулли "унаследовал" место профессора математики после смерти своего старшего брата Якоба. Даниил учился в Базельской гимназии. После окончания гимназии в 1713г. его отправили во Францию совершенствовать знание французского языка. После возвращения на родину в 1716 г. он получил звание магистра философии. По настоянию отца Даниил занялся изучением медицины, как наиболее практичной из профессий. Он учился в Гейдельберге, в Страсбурге и после защиты диссертации "О дыхании" в 1720 г. стал лиценциатом медицины. Но сердце Даниила не лежало к врачебной деятельности, его больше влекло к математическим наукам. В 1724 г. выходит в свет первый научный трактат Даниила Бернулли "Математические упражнения". В этом же году он становится членом научной академии в Болонье и получает предложение возглавить академию в Генуе. Пока Даниил раздумывал, пришло приглашение из России поступить на службу в только что созданную Петром I Петербургскую академию. Предложение было заманчивым, но Даниилу не хотелось расставаться с братом Николаем, с которым его связывала трогательная дружба. Затруднение разрешилось очень просто. Тогдашний президент Петербургской академии Л.Л. Блюментрост пригласил обоих Бернулли. Отправляя своих сыновей в дальнюю дорогу, Иоганн Бернулли напутствовал их следующими словами: "...лучше несколько потерпеть от сурового климата страны льдов, в которой приветствуют муз, чем умереть от голода в стране с умеренным климатом, в которой муз обижают и презирают".

В октябре 1725 г. братья прибыли в Петербург. Даниил получил кафедру физиологии, Николай - математики. Братья сразу же включились в работу академии. К сожалению, деятельность Николая Бернулли продолжалась недолго. Климат северной столицы оказался для него слишком суровым. Через восемь месяцев после приезда в Петербург Николай умер. Даниил Бернулли оставался в Петербурге до лета 1733 г. Он вел научные исследования, выступал с лекциями, участвовал в диспутах. Вернувшись в Базель, Д. Бернулли получил в университете кафедру анатомии и ботаники, но больше занимался экспериментальной физикой. В 1750 г. он возглавил кафедру физики, которую и занимал до последних дней своей жизни. Наука была единственной страстью Даниила Бернулли. Возможно, поэтому он не был женат. Из-за занятий наукой у него были натянутые отношения с отцом, с которым они все время вели споры о приоритете. Отец и сын независимо занимались одними и теми же проблемами и занимались успешно. Об этом ярко свидетельствует следующий факт. В 1732 г. Парижская академия наук объявила конкурс на тему "О взаимном наклонении планет". Две работы из поступивших на конкурс были признаны лучшими, и премию было решено разделить между их авторами. Когда вскрыли конверты с девизами, то оказалось, что эти авторы- отец и сын Бернулли. "Я радуюсь, что и твой сын носит печать Бернулли и хранит наследственный блеск фамилии", - писал Лейбниц Иоганну Бернулли. Даниил Бернулли был очень добрым человеком. Он жертвовал университету, в котором преподавал, крупные суммы денег, построил дешевую гостиницу для путешествующих студентов, помогал нуждающимся и т.п. Он был чужд зависти и радовался научным достижениям, полученными другими. Научный авторитет Даниила Бернулли был очень высок. Свидетельством этого было избрание его членом многих иностранных академий наук (помимо Петербургской) - Берлинской (1747г.), Парижской (1748г.), Лондонского королевского общества (1750г.). До последних дней жизни он занимался научной деятельностью. 17 марта 1782 г. слуга нашел его в кресле заснувшим навсегда.

Значительный вклад внес Даниил Бернулли в математику. Он занимался решением уравнения Риккати, которое часто встречается в различных задачах механики. Д.Бернулли вычислил предел выражения (1+1/n)n. Это всем известное теперь число e - основание натуральных логарифмов. Успешно занимался Д.Бернулли теорией рядов, различными специальными функциями, теорией вероятностей. Он ввел понятие морального ожидания, которым затем широко пользовались Лаплас, Пуассон. В азартных играх моральное ожидание проигрыша превышает моральное ожидание выигрыша. Впоследствии понятие морального ожидания не получило своего дальнейшего развития. Д. Бернулли предложил решать вероятностные задачи приемами дифференциального исчисления, считая единицу "бесконечно малой" по сравнению с другими "большими числами", встречающихся в задаче.

Вклад Даниила Бернулли в науку трудно переоценить. Вместе с М.В. Ломоносовым он стоял у истоков кинетической теории газов. В его трудах можно найти предвосхищение законов Гей-Люссака, Клайперона и Шарля. Даниил Бернулли был первым, кто высказал суждение о том, что давление газа обусловлено тепловым движением молекул. В гидродинамике Даниил Бернулли дал уравнение установившегося движения идеальной несжимаемой жидкости. Оно выражает собой закон сохранения энергии. Уравнение Бернулли позволяет понять многие явления гидромеханики и аэромеханики. Оно используется при расчете различных трубопроводов, насосов и расходомеров, исследовании процессов фильтрации и т.п. Вместе с некоторыми другими соотношениями уравнение Бернулли, записанное для среды с переменной плотностью "РО", составляет основу газовой динамики. Д. Бернулли совместно с Л. Эйлером принадлежит главная заслуга в разработке механики жидких тел. Более пятидесяти лет (с 1727 по 1778 гг.) Даниил Бернулли занимался изучением колебаний. В своих первых работах он исследовал малые колебания грузов, подвешенных на гибкой нити, а также подвешенного тяжелого однородного каната. В последующих работах он изучал колебания струн и стержней, ввел понятие простого гармонического колебания и обосновал положение о том, что общее колебание системы получается от сложения простых гармонических колебаний. Этот важный принцип получил впоследствии название принципа суперпозиции (наложения) колебаний. Даниила Бернулли вместе с Д'Аламбером, Л. Эйлером и Лагранжем можно считать основателем математической физики.

Выдающиеся математики

Жерар Дезарг

Дезарг (Dйsargues) Жерар [1593, Лион, - 1662, там же (по другим данным - 1591-1661)], французский математик. Был военным инженером. Заложил основы проективной и начертательной геометрии. В своих исследованиях систематически применял перспективное изображение. Первым ввел в геометрию бесконечно удаленные элементы. Дезаргу принадлежит одна из основных теорем проективной геометрии, а также сочинения о резьбе по камню и о солнечных часах, где он дает геометрические обоснования практическим операциям.

Выдающиеся математики

Исаак Ньютон

Ньютон (Newton) Исаак (4.01.1643, Вулсторп, около Граптема, - 31.03.1727, Кенсингтон), английский физик и математик, создавший теоретические основы механики и астрономии, открывший закон всемирного тяготения, разработавший (наряду с Готфридом Лейбницем) дифференциальное и интегральное исчисления, изобретатель зеркального телескопа и автор важнейших экспериментальных работ по оптике.

Ньютон родился в семье фермера; отец умер незадолго до рождения сына. В 12 лет Исаак начал учиться в Грантемской школе, в 1661 поступил в Тринити-колледж Кембриджского университета в качестве субсайзера (так назывались бедные студенты, выполнявшие для заработка обязанности слуг в колледже), где его учителем был известный математик И. Барроу. Окончив университет, Ньютон в 1665 получил ученую степень бакалавра. В 1665-67, во время эпидемии чумы, находился в своей родной деревне Вулсторп; эти годы были наиболее продуктивными в научном творчестве Ньютона. Здесь у него сложились в основном те идеи, которые привели его к созданию дифференциального и интегрального исчислений, к изобретению зеркального телескопа (собственноручно изготовленного им в 1668), открытию закона всемирного тяготения; здесь он провел опыты над разложением света. В 1668 Ньютону была присвоена степень магистра, а в 1669 Барроу передал ему почетную люкасовскую физико-математическую кафедру, которую Ньютон занимал до 1701. В 1687 он опубликовал свой грандиозный труд «Математические начала натуральной философии» (кратко - «Начала»). В 1695 получил должность смотрителя Монетного двора (этому, очевидно, способствовало то, что Ньютон изучал свойства металлов). Ему было поручено руководство перечеканкой всей английской монеты. Ему удалось привести в порядок расстроенное монетное дело Англии, за что он получил в 1699 пожизненное высокооплачиваемое звание директора Монетного двора. В том же году Ньютон избран иностранным членом Парижской АН. В 1703 он стал президентом Лондонского королевского общества. В 1705 за научные труды он возведен в дворянское достоинство. Похоронен Ньютон в английском национальном пантеоне - Вестминстерском аббатстве.

Основные вопросы механики, физики и математики, разрабатывавшиеся Ньютоном, были тесно связаны с научной проблематикой его времени. Оптикой Ньютон начал интересоваться еще в студенческие годы. В 1672 году он высказал свои взгляды о «телесности света» (корпускулярная гипотеза света). Эта работа вызвала бурную полемику, в которой противником корпускулярных взглядов Ньютон на природу света выступил Роберт Гук (в то время господствовали волновые представления). Отвечая Гуку, Ньютон высказал гипотезу, сочетавшую корпускулярные и волновые представления о свете. Эту гипотезу он развил затем в сочинении «Теория света и цветов», в котором описан также опыт с кольцами Ньютона и установил периодичность света. При чтении этого сочинения на заседании Лондонского королевского общества Гук выступил с притязанием на приоритет, и раздраженный Ньютон принял решение не публиковать оптических работ. Многолетние оптические исследования Исаака Ньютона были опубликованы им лишь в 1704 (через год после смерти Гука) в фундаментальном труде «Оптика». Принципиальный противник необоснованных и произвольных гипотез, Ньютон начинает «Оптику» словами: «Мое намерение в этой книге - не объяснять свойства света гипотезами, но изложить и доказать их рассуждениями и опытами». В «Оптике» Ньютон описал проведенные им чрезвычайно тщательные эксперименты по обнаружению дисперсии света и показал, что дисперсия вызывает искажение в линзовых оптических системах - хроматическую аберрацию. Ошибочно считая, что устранить искажение, вызываемое ею, невозможно, Ньютон сконструировал зеркальный телескоп. Наряду с опытами по дисперсии света он описал интерференцию света в тонких пластинках и изменение интерференционных цветов в зависимости от толщины пластинки в кольцах Ньютона. По существу Ньютон первым измерил длину световой волны. Кроме того, он описал здесь свои опыты по дифракции света.

«Оптика» завершается специальным приложением - «Вопросами», где Ньютон высказывает свои физические взгляды. В частности, здесь он излагает воззрения на строение вещества, в которых присутствует в неявном виде понятие не только атома, но и молекулы. Кроме того, Ньютон приходит к идее иерархического строения вещества: он допускает, что «частички тел» (атомы) разделены промежутками -- пустым пространством, а сами состоят из более мелких частичек, также разделенных пустым пространством и состоящих из еще более мелких частичек, и т.д. до твердых неделимых частичек. Н. вновь рассматривает здесь гипотезу о том, что свет может представлять собой сочетание движения материальных частиц с распространением волн эфира.

Вершиной научного творчества Ньютона являются «Начала», в которых ученый обобщил результаты, полученные его предшественниками (Г. Галилей, И. Кеплер, Р. Декарт, Х. Гюйгенс, Дж. Борелли, Р. Гук, Э. Галлей и др.), и свои собственные исследования и впервые создал единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон дал определения исходных понятий - количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Ньютон впервые рассмотрел основной метод феноменологического описания любого физического воздействия через посредство силы. Определяя понятия пространства и времени, он отделял «абсолютное неподвижное пространство» от ограниченного подвижного пространства, называя «относительным», а равномерно текущее, абсолютное, истинное время, называя «длительностью», - от относительного, кажущегося времени, служащего в качестве меры «продолжительности». Эти понятия времени и пространства легли в основу классической механики. Затем Ньютон сформулировал свои 3 знаменитые «аксиомы, или законы движения»: закон инерции (открытый Галилеем, первый закон Ньютона), закон пропорциональности количества движения силе (второй закон Ньютона) и закон равенства действия и противодействия (третий закон Ньютона). Из второго и третьего законов он выводит закон сохранения количества движения для замкнутой системы.

Ньютон рассмотрел движение тел под действием центральных сил и доказал, что траекториями таких движений являются конические сечения (эллипс, гипербола, парабола). Он изложил свое учение о всемирном тяготении, сделал заключение, что все планеты и кометы притягиваются к Солнцу, а спутники - к планетам с силой, обратно пропорциональной квадрату расстояния, и разработал теорию движения небесных тел. Ньютон показал, что из закона всемирного тяготения вытекают законы Кеплера и важнейшие отступления от них. Так, он объяснил особенности движения Луны (вариацию, попятное движение узлов и т.д.), явление прецессии и сжатие Юпитера, рассмотрел задачи притяжения сплошных масс, теории приливов и отливов, предложил теорию фигуры Земли.

В «Началах» Ньютон исследовал движение тел в сплошной среде (газе, жидкости) в зависимости от скорости их перемещения и привел результаты своих экспериментов по изучению качания маятников в воздухе и жидкостях. Здесь же он рассмотрел скорость распространения звука в упругих средах. Ученый доказал посредством математического расчета полную несостоятельность гипотезы Декарта, объяснявшего движение небесных тел с помощью представления о разнообразных вихрях в эфире, заполняющем Вселенную. Также он нашел закон охлаждения нагретого тела. В этом же сочинении он уделил значительное внимание закону механического подобия, на основе которого развилась теория подобия.

Таким образом, в «Началах» впервые дана общая схема строгого математического подхода к решению любой конкретной задачи земной или небесной механики. Дальнейшее применение этих методов потребовало, однако, детальной разработки аналитической механики (Л. Эйлер, Ж. Д'Аламбер, Ж. Лагранж, У. Гамильтон) и гидромеханики (Л. Эйлер и Д. Бернулли). Последующее развитие физики выявило пределы применимости механики Ньютона.

Задачи естествознания, поставленные Ньютоном, потребовали разработки принципиально новых математических методов. Математика для Ньютона была главным орудием в физических изысканиях; он подчеркивал, что понятия математики заимствуются извне и возникают как абстракция явлений и процессов физического мира, что по существу математика является частью естествознания.

Разработка дифференциального интегрального исчисления явилась важной вехой в развитии математики. Большое значение имели также работы Ньютона по алгебре, интерполированию и геометрии. Основные идеи метода флюксий (наиболее ранней формы дифференциального и интегрального исчислений) сложились у Ньютона под влиянием трудов П. Ферма, Д. Валлиса и его учителя И. Барроу в 1665-66. К этому времени относится открытие Ньютоном взаимно обратного характера операций дифференцирования и интегрирования и фундаментальные открытия в области бесконечных рядов, в частности индуктивное обобщение так называемой теоремы о биноме Ньютона на случай любого действительного показателя. Вскоре были написаны и основные сочинения Ньютона по анализу, изданные, однако, значительно позднее. Некоторые математические открытия Ньютона получили известность уже в 70-е гг. благодаря его рукописям и переписке.

В понятиях и терминологии метода флюксий с полной отчетливостью отразилась глубокая связь математических и механических исследований ученого. Понятие непрерывной математической величины Ньютон вводит как абстракцию от различных видов непрерывного механического движения. Линии производятся движением точек, поверхности - движением линий, тела - поверхностей, углы - вращением сторон и т.д. Переменные величины Ньютон назвал флюентами (текущими величинами, от лат. fluo - теку). Общим аргументом флюент является «абсолютное время», к которому отнесены прочие, зависимые переменные. Скорости изменения флюент Ньютон назвал флюксиями, а необходимые для вычисления флюксий бесконечно малые изменения флюент - «моментами» (у Лейбница они назывались дифференциалами). Таким образом, Ньютон положил в основу понятия флюксий (производной) и флюенты (первообразной, или неопределенного интеграла).

В сочинении «Анализ при помощи уравнений с бесконечным числом членов» (1669) Ньютон вычислил производную и интеграл любой степенной функции. Различные рациональные, дробно-рациональные, иррациональные и некоторые трансцендентные функции (логарифмическую, показательную, синус, косинус, арксинус) Ньютон выражал с помощью бесконечных степенных рядов. В этом же труде Ньютон изложил метод численного решения алгебраических уравнений, а также метод для нахождения разложения неявных функций в ряд по дробным степеням аргумента. Метод вычисления и изучения функций их приближением бесконечными рядами приобрел огромное значение для всего анализа и его приложений.

Наиболее полное изложение дифференциального и интегрального исчислений содержится в «Методе флюксий...» (1670-1671, опубл. 1736). Здесь Ньютон формулирует две основные взаимно обратные задачи анализа:

· определение скорости движения в данный момент времени по известному пути, или определение соотношения между флюксиями по данному соотношению между флюентами (задача дифференцирования),

· определение пройденного за данное время пути по известной скорости движения, или определение соотношения между флюентами по данному соотношению между флюксиями (задача интегрирования дифференциального уравнения и, в частности, отыскания первообразных).

Метод флюксий применяется здесь к большому числу геометрических вопросов (задачи на касательные, кривизну, экстремумы, квадратуры, спрямления и др.); здесь же выражается в элементарных функциях ряд интегралов от функций, содержащих квадратный корень из квадратичного трехчлена. Большое внимание уделено в «Методе флюксий» интегрированию обыкновенных дифференциальных уравнений, причем основную роль играет представление решения в виде бесконечного степенного ряда. Ньютону принадлежит также решение некоторых задач вариационного исчисления.

Во введении к «Рассуждению о квадратуре кривых» (1665-70) и в «Началах» он намечает программу построения метода флюксий на основе учения о пределе, о «последних отношениях исчезающих величин» или «первых отношениях зарождающихся величин», не давая, впрочем, формального определения предела и рассматривая его как первоначальное.

В «Методе разностей» (1711) Ньютон дал решение задачи о проведении через n + 1 данные точки с равноотстоящими или неравноотстоящими абсциссами параболической кривой n-го порядка и предложил интерполяционную формулу, носящую его имя, а в «Началах» дал теорию конических сечений. В «Перечислении кривых третьего порядка» (1704) приводится классификация этих кривых, сообщаются понятия диаметра и центра, указываются способы построения кривых второго и третьего порядка по различным условиям. Этот труд сыграл большую роль в развитии аналитической и отчасти проективной геометрии. Во «Всеобщей арифметике» (1707) содержатся важные теоремы о симметрических функциях корней алгебраических уравнений, об отделении корней, о приводимости уравнений и др. Алгебра окончательно освобождается у Ньютона от геометрической формы, и его определение числа не как собрания единиц, а как отношения длины любого отрезка к отрезку, принятому за единицу, явилось важным этапом в развитии учения о действительном числе.

Созданная Ньютоном теория движения небесных тел, основанная на законе всемирного тяготения, была признана крупнейшими английским учеными того времени и резко отрицательно встречена на европейском континенте. Противниками взглядов Ньютона (в частности, в вопросе о тяготении) были картезианцы, воззрения которых господствовали в Европе (в особенности во Франции) в первой половине XVIII в. Убедительным доводом в пользу теории Ньютона явилось обнаружение рассчитанной им приплюснутости земного шара у полюсов вместо выпуклостей, ожидавшихся по учению Декарта. Успехи теории Ньютона в решении задач небесной механики увенчались открытием планеты Нептун (1846), основанном на расчетах возмущений орбиты Урана (У. Леверье и Дж. Адамс).

Вопрос о природе тяготения во времена Ньютона сводился в сущности к проблеме взаимодействия, т. е. наличия или отсутствия материального посредника в явлении взаимного притяжения масс. Не признавая картезианских воззрений на природу тяготения, Ньютон, однако, уклонился от каких-либо объяснений, считая, что для них нет достаточных научно-теоретических и опытных оснований. После его смерти возникло научно-философское направление, получившее название ньютонианства, наиболее характерной чертой которого была абсолютизация и развитие высказывания Ньютона: «гипотез не измышляю» («hypotheses non fingo») и призыв к феноменологическому изучению явлений при игнорировании фундаментальных научных гипотез.

Могучий аппарат ньютоновской механики, его универсальность и способность объяснить и описать широчайший круг явлений природы, особенно астрономических, оказали огромное влияние на многие области физики и химии. Ньютон писал, что было бы желательно вывести из начал механики и остальные явления природы, и при объяснении некоторых оптических и химических явлений сам использовал механической модели. Влияние взглядов Ньютона на дальнейшее развитие науки огромно. «Ньютон заставил физику мыслить по-своему, «классически», как мы выражаемся теперь... Можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли; без Ньютона наука развивалась бы иначе» (Сергей Вавилов, 1961).

Материалистические естественнонаучные воззрения совмещались у Ньютона с религиозностью. К концу жизни он написал сочинение о пророке Данииле и толкование Апокалипсиса. Однако ученый четко отделял науку от религии. «Ньютон оставил Ему (Богу) еще «первый толчок», но запретил всякое дальнейшее вмешательство в свою солнечную систему» (Ф. Энгельс).

На русский язык переведены все основные работы Ньютона; большая заслуга в этом принадлежит А. Крылову и С. Вавилову.

Пьер Ферма

Ферма (Fermat) Пьер (17.08.1601, Бомон-де-Ломань, - 12.01.1665, Кастр), французский математик. По профессии юрист: с 1631 был советником парламента в Тулузе. Автор ряда выдающихся работ, большинство из которых было издано после смерти Ферма его сыном, - «Различные сочинения» (1679); при жизни Ферма полученные им результаты становились известны ученым благодаря переписке и личному общению.

Ферма является одним из создателей теории чисел, где с его именем связаны две знаменитые теоремы: великая теорема Ферма и малая теорема Ферма. В области геометрии Ферма в более систематической форме, чем Р. Декарт, развил метод координат, дав уравнения прямой и линий второго порядка и наметив доказательство положения о том, что все кривые второго порядка - конические сечения. В области метода бесконечно малых систематически изучил процесс дифференцирования, дал общий закон дифференцирования степени и применил этот закон к дифференцированию дробных степеней. В подготовке современных методов дифференциального исчисления большое значение имело создание им правила нахождения экстремумов. Ферма дал общее доказательство правильности закона интегрирования степени, подмеченного на частных случаях уже ранее. Он распространил его и на случай дробных и отрицательных степеней. В трудах Ферма, таким образом, получили систематическое развитие оба основных процесса метода бесконечно малых, однако он, как и его современники, прошел мимо связи между операциями дифференцирования и интегрирования. Эта связь была установлена несколько позднее (в систематической форме) Г. Лейбницем и И. Ньютоном. Своими работами Ферма оказал большое влияние на дальнейшее развитие математики. В области физики с именем Ферма связано установление основного принципа геометрической оптики.

Рене Декарт

Декарт Peнe (1596 - 1650) -- французский философ и естествоиспытатель. Исходил из того, что наиболее достоверным для исследователя является его собственное мышление, в котором признак осознаваемости может выступать критерием различения психических процессов от непсихических. На этом основании он пришел к отрицанию наличия души у животных, которые являются лишь „рефлекторными автоматами“. В основу решения психофизической проблемы Декарт положил идею взаимодействия: душа, имеющая одним из основных своих атрибутов мышление, и тело (природа), характеризующееся протяжением, могут соединиться в человеке лишь с помощью третьей, божественной субстанции.

ЭЙЛЕР ЛЕОНАРД (1707-1783)

Идеальный математик 18 века - так часто называют Эйлера. Это был недолгий век Просвещения, вклинившийся между эпохами жестокой нетерпимости. Всего за 6 лет до рождения Эйлера в Берлине была публично сожжена последняя ведьма. А через 6 лет после смерти Эйлера - в 1789 году - в Париже вспыхнула революция. Эйлеру повезло: он родился в маленькой тихой Швейцарии, куда изо всей Европы приезжали мастера и ученые, не желавшие тратить дорогое рабочее время на гражданские смуты или религиозные распри. Так переселилась в Базель из Голландии семья Бернулли: уникальное созвездие научных талантов во главе с братьями Якобом и Иоганном. По воле случая юный Эйлер попал в эту компанию и вскоре сделался достойным членом базельского "питомника гениев". Братья Бернулли увлеклись математикой, прочтя статьи Лейбница об исчислении производных и интегралов. Вскоре вокруг братьев сложился яркий математический кружок, и на полвека Базель стал третьим по важности научным центром Европы - после Парижа и Лондона, где уже процветали академии наук. Каждый год на кружке решались новые трудные и красивые задачи, а на смену им вставали новые увлекательные проблемы.

Но когда ученые орлята подросли, выяснилось, что в Швейцарии не хватит места для их гнезд. Зато в далекой России, по замыслу Петра 1 и по проекту Лейбница, была учреждена в 1725 году Петербургская Академия Наук. Русских ученых не хватало, и тройка друзей: Леонард Эйлер с братьями Даниилом и Николаем Бернулли (сыновьями Иоганна) - отправилась туда, в поисках счастья и научных подвигов. Чем только не пришлось заниматься Эйлеру на новом месте! Он обрабатывал данные всероссийской переписи населения. Эту огромную работу Эйлер вел в одиночку, быстро проделывая все вычисления в уме: ведь компьютеров еще не было. Он расшифровывал дипломатические депеши, перехваченные русской контрразведкой. Оказалось, что эту работу математики выполняют быстрее и надежнее прочих специалистов. Он обучал молодых моряков высшей математике и астрономии, а также основам кораблестроения и управления парусным судном в штиль или в бурю. И еще составлял таблицы для артиллерийской стрельбы и таблицы движения Луны. Ведь в дальнем плавании Луна часто заменяла часы при определении долготы! Только гений мог, выполняя всю эту работу, не забыть о большой науке. Эйлер оказался гением. За 15 лет своего первого пребывания в России он успел написать первый в мире учебник теоретической механики (не учить же простого студента по сложным книгам Ньютона!), а также курс математической навигации и многие другие труды. Писал Эйлер легко и быстро, простым и понятным языком. Столь же быстро он выучивал новые языки, но вкуса к литературе не имел. Математика поглощала все его время и силы.

В 26 лет Эйлер был избран российским академиком, но через 8 лет он переехал из Петербурга в Берлин. В чем дело? Да, тогдашнее российское правительство было малограмотным и свирепым. Только что завершилось правление Анны Иоанновны, и возобновилась чехарда военных переворотов. Однако Эйлера это впрямую не касалось: считаться "немцем" в Петербурге было безопасно и престижно, а ученые немцы были на вес золота. Но Эйлер уже почувствовал себя одним из сильнейших математиков Европы - и вдруг заметил, что ему не с кем на равных поговорить о своей науке. Приезжая иностранная молодежь повзрослела и либо уехала из дикой и опасной России, либо погрязла в мелкой текущей работе. А первое поколение ученых россиян еще не выросло. Вспомним, что Ломоносова тогда послали на учебу в Германию! Эйлер решил переехать туда, где накал ученых дискуссий был повыше. Он выбрал Берлин, где молодой король Фридрих 2 Прусский решил создать научный центр не слабее парижского. Эйлер провел в Берлине четверть века, и считал эти годы лучшими в своей жизни. В Берлине Эйлер занимался всей математикой сразу, и почти все у него получалось. Например, захотелось ему перенести все методы математического анализа на функции, зависящие от комплексных чисел - и создал он теорию функций комплексного переменного. Попутно Эйлер выяснил, что показательная функция и синусоида суть две стороны одной медали. Аналогично было с Большой Теоремой Ферма. Услыхав о ней, Эйлер решил сам придумать утраченное доказательство - и вскоре обнаружил "метод спуска", найденный Ферма веком раньше. Проверив этот метод для степеней 3 и 4, Эйлер стал проверять его для следующего простого показателя - 5. Тут обнаружились неожиданные затруднения, и Эйлер оставил эту тему молодым исследователям. Но только в конце 20 века эта проблема, кажется, приблизилась к окончательному решению.

В геометрии Эйлер также оставил значительный след. Он искал в ней не столько новые изящные факты, сколько общие теоремы, не укладывающиеся в догматику Евклида. Например, теорема о связи между числами вершин, ребер и граней выпуклого многогранника. Эту формулу знал еще Декарт; но он не оставил ее доказательства. В Берлине "король математиков" Леонард Эйлер работал с 1741 по 1766 год; потом он покинул Берлин и вернулся в Россию. Надвигалась старость, выросла огромная семья, а новая российская царица Екатерина 2 (немка по происхождению) предложила Эйлеру гораздо лучшие условия жизни, чем предоставлял своим академикам скуповатый и капризный Фридрих 2. Тесное общение с научной молодежью Эйлера уже не увлекало; он торопился успеть изложить на бумаге те бесчисленные открытия и догадки, которые осенили его в золотую берлинскую пору. Все научные журналы Европы охотно печатали новые статьи Эйлера. Его трудоспособность и вдохновение с годами нарастали, и многие тексты увидели свет лишь после смерти автора. Переезд Эйлера в Петербург мало что изменил для математиков Европы. Великое светило лишь сместилось на восток, не исчезая с горизонта. Удивительно другое: слава Эйлера не закатилась и после того, как ученого поразила слепота (вскоре после переезда в Петербург). Неукротимый старец продолжал размышлять о математике и диктовать очередные статьи или книги до самой смерти. Она настигла его на 77 году жизни и на 16 году слепоты... В 1770-е годы вокруг Эйлера выросла Петербургская математическая школа, более чем наполовину состоявшая из русских ученых. Тогда же завершилась публикация главной его книги - "Основ дифференциального и интегрального исчисления", по которой учились все европейские математики с 1755 по 1830 год. Она выгодно отличается от "Начал" Евклида и от "Принципов" Ньютона. Возведя стройное здание математического анализа от самого фундамента, Эйлер не убрал те леса и лестницы, по которым он сам карабкался к своим открытиям. Многие красивые догадки и начальные идеи доказательств сохранены в тексте, несмотря на содержащиеся в них ошибки - в поучение всем наследникам эйлеровой мысли. Первый учебник, предназначенный не для последователей, а для исследователей: таково завещание Эйлера и всей эпохи Просвещения, адресованное грядущим векам и народам.

Гаспар Монж

Монж Гаспар (10.5.1746-28.7.1818) - французский геометр и общественный деятель, Член Парижской Академии Наук (1780г.). Творец начертательной геометрии, один из организаторов Политехнической школы в Париже и ее многолетний директор. Родился в Бон Кот-д'0р. Окончил Школу военных инженеров в Мезьере. С 1768г.-профессор математики, с 1771г.-также профессор физики в этой школе. С 1780г. преподавал гидравлику в Луврской школе (Париж). Занимался математическим анализом, химией, метеорологией, практической механикой. В период Французской буржуазной революции работал в комиссии по установлению новой системы мер и весов, затем был морским министром и организатором национальной обороны. Во время Директории сблизился с Наполеоном, принимал участие в его походе в Египет и основании в Каире Египетского института (1798г.); был возведен в графы. Получил всемирное признание, создав (в 70-е годы) современные методы проекционного черчения и его основу - начертательную геометрию. Главное произведение Монжа по этим вопросам- "Начертательная геометрия"; опубликованная в 1799г. Важные открытия сделал также в дифференциальной геометрии. Первые работы Монжа об уравнениях поверхностей опубликованы в 1770г и 1773г. В 1795г и 1801г изданы работы Монжа о конечных и дифференциальных уравнениях разных поверхностей. В 1804 издана книга "Применение анализа в геометрии". В ней Монж рассматривал цилиндрические и конические поверхности, образуемые движением горизонтальной прямой, проходящей через фиксированную вертикальную прямую, поверхности "каналов", поверхности, в которых линии наибольшего уклона везде образуют постоянный угол с горизонтальной плоскостью; поверхности перенесения и т. д. В качестве приложения к книге Монж дал свою теорию интегрирования уравнений с частными производными 1-го порядка и свое решение задачи о колебании струны. Для каждого из видов поверхностей вывел сначала дифференциальное, потом конечное уравнение. Первый обозначил буквами p и q частные производные от z по x и у, а буквами r, s и t- производные 2-го порядка.

Жан Батист Жозеф Фурье

Французский математик и физик. Родился в семье портного. В 9 лет потерял обоих родителей. Сироту устроили в Военную школу при бенедиктинском монастыре. В 1789 году приехал в Париж, чтобы представить работу о численном решении уравнений любой степени, но она затерялась во время революции. Фурье вернулся в Осер и стал преподавать в школе, где прежде учился.

В 1794 году поступает в Нормальную школу, организованную Конвентом для подготовки учителей. Вскоре школу закрыли, но он успел обратить на себя внимание видных ученых (Лагранжа, Лапласа и Монжа). В 1795 -- 1798 годах преподавал в Политехнической школе.

Участвовал вместе с другими учеными в Египетском походе Наполеона. Был секретарем, учрежденного Наполеоном, Каирского института. После победы Англии, в 1802 году был назначен префектом департамента Изер со штаб-квартирой в Гренобле, где он продолжил свои научные изыскания по алгебре, и активно работал в новой области физики -- теории теплоты. В 1808 Фурье получил титул барона и был награжден орденом Почетного легиона.

После поражения Наполеона под Ватерлоо и конца «ста дней», был отстранен от должности префекта и переехал в Париж. Здесь он некоторое время работал директором Статистического бюро, и благодаря опыту полученному в Египте он поднял это дело на высоту. В 1816 году Парижская академия наук избирала его своим членом, но король Людовик XVIII отменил избрание. В 1816 году Академия наук снова избирает его своим членом, но на этот раз избрание подтверждается. Фурье становится одним из самых влиятельных академиков и в 1822 году его избирают пожизненным секретарем. В этом же году он издает Аналитическую теорию тепла (Thйorie analytique de la chaleur). Умер 16 мая 1830 года в Париже.

Научные достижения

Доказал теорему о числе действительных корней алгебраического уравнения, лежащих между данными пределами (Теорема Фурье 1796).

Исследовал, независимо от Ж. Мурайле, вопрос об условиях применимости разработанного Исааком Ньютоном метода численного решения уравнений (1818).

Монографии «Аналитическая теория тепла», в которой был дан вывод уравнения теплопроводности в твердом теле, и разработка методов его интегрирования при различных граничных условиях. Метод Фурье состоял в представлении функций в виде тригонометрических рядов (рядов Фурье).

Нашел формулу представления функции с помощью интеграла, играющую важную роль в современной математике.

Доказал, что всякую произвольно начерченную линию, составленную из отрезков дуг разных кривых, можно представить единым аналитическим выражением.

В 1823 независимо от Эрстеда открыл термоэлектрический эффект, показал, что он обладает свойством суперпозиции, создал термоэлектрический элемент.

Жозеф Лагранж

Лагранж (Lagrange) Жозеф Луи (25.01.1736, Турин, - 10.04.1813, Париж), французский математик и механик, член Парижской АН (1772). Родился в семье обедневшего чиновника. Самостоятельно изучал математику. В 19 лет Лагранж уже стал профессором в артиллерийской школе Турина. В 1759 был избран членом Берлинской АН, а в 1766-87 был ее президентом. В 1787 Лагранж переехал в Париж; с 1795 - профессор Нормальной школы, с 1797 - Политехнической школы.

Наиболее важные труды Лагранжа относятся к вариационному исчислению, к аналитической и теоретической механике. Опираясь на результаты, полученные Л. Эйлером, он разработал основные понятия вариационного исчисления и предложил общий аналитический метод (метод вариаций) для решения вариационных задач. В классическом трактате «Аналитическая механика» (1788) Лагранж в основу всей статики положил «общую формулу», являющуюся принципом возможных перемещений, а в основу всей динамики - «общую формулу», являющуюся сочетанием принципа возможных перемещений с принципом Д'Аламбера. Из «общей формулы» динамики может быть получена, как частный случай, «общая формула» статики. Лагранж ввел обобщенные координаты и придал уравнениям движения форму, называемую его именем.

Лагранж стремился установить «простые» и «всеобщие» принципы механики. При этом он исходил из характерных для прогрессивных ученых XVIII века представлений, что только такие принципы могут быть истинными, соответствующими объективной реальности.

Лагранжу принадлежат также выдающиеся исследования по различным вопросам математического анализа (формула остаточного члена ряда Тейлора, формула конечных приращений, теория условных экстремумов), теории чисел, алгебре (симметрической функции корней уравнения, теория и приложения непрерывных дробей), по дифференциальным уравнениям (теория особых решений, метод вариации постоянных), по интерполированию, математической картографии, астрономии и пр.

Рене Декарт

Декарт (Descartes) Рене (латинизированное имя - Картезий, Renatus Cartesius) [31.03.1596, Лаэ (Турень), - 11.02.1650, Стокгольм], французский философ и математик. Происходил из старинного дворянского рода. Образование получил в иезуитской школе Ла Флеш в Анжу. В начале Тридцатилетней войны служил в армии, которую оставил в 1621; после нескольких лет путешествий переселился в Нидерланды (1629), где провел двадцать лет в уединенных научных занятиях. Здесь вышли его главные сочинения - «Рассуждение о методе...» (1637), «Размышления о первой философии...» (1641), «Начала философии» (1644). В 1649 по приглашению шведской королевы Кристины переселился в Стокгольм, где вскоре умер.

Основная черта философского мировоззрения Декарта - дуализм души и тела, «мыслящей» и «протяженной» субстанции. Отождествляя материю с протяжением, Декарт понимает ее не столько как вещество физики, сколько как пространство стереометрии. В противоположность средневековым представлениям о конечности мира и качественном разнообразии природных явлений Декарт утверждает, что мировая материя (пространство) беспредельна и однородна; она не имеет пустот и делима до беспредельности. Каждую частицу материи философ рассматривал как инертную и пассивную массу. Движение, которое Декарт сводил к перемещению тел, возникает всегда только в результате толчка, сообщаемого данному телу другим телом. Общей же причиной движения в дуалистической концепции Декарта является Бог, который сотворил материю вместе с движением и покоем и сохраняет их.

Учение Декарта о человеке также дуалистично. Человек есть реальная связь бездушного и безжизненного телесного механизма с душой, обладающей мышлением и волей. Взаимодействие между телом и душой совершается, по предположению Декарта, посредством особого органа - так называемой шишковидной железы. Тело человека (как и тело животных) представляет собой, согласно Декарту, всего лишь сложный механизм, созданный из материальных элементов и способный, в силу механического воздействия на него окружающих предметов, совершать сложные движения.

В круге вопросов философии, которые разрабатывал Декарт, первостепенное значение имел вопрос о методе познания. Как и Ф. Бэкон, Декарт видел конечную задачу знания в господстве человека над силами природы, в открытии и изобретении технических средств, в познании причин и действий, в усовершенствовании самой природы человека. Исходный пункт философских рассуждений Декарта - сомнение в истинности общепризнанного знания, охватывающее все виды знания. Однако, как и у Бэкона, сомнение, с которого начинал Декарт, есть не убеждение агностика, а только предварительный методический прием. Можно сомневаться в том, существует ли внешний мир, и даже в том, существует ли мое тело. Но само мое сомнение во всяком случае существует. Сомнение же есть один из актов мышления: я сомневаюсь, поскольку я мыслю; я мыслю, следовательно я существую.

В учении о познании Декарт был родоначальником рационализма, который сложился в результате наблюдений над логическим характером математического знания. Математические истины, по Декарту, совершенно достоверны, обладают всеобщностью и необходимостью, вытекающими из природы самого интеллекта. Поэтому Декарт отвел исключительную роль в процессе познания дедукции, под которой он понимал рассуждение, опирающееся на вполне достоверные исходные положения (аксиомы) и состоящее из цепи также достоверных логических выводов. Достоверность аксиом усматривается разумом интуитивно, с полной ясностью и отчетливостью. Для ясного и отчетливого представления всей цепи звеньев дедукции нужна сила памяти. Поэтому непосредственно очевидные исходные положения, или интуиции, имеют преимущество по сравнению с рассуждениями дедукции. Вооруженный достоверными средствами мышления - интуицией и дедукцией, разум может достигнуть во всех областях знания полной достоверности, если только будет руководствоваться истинным методом.

Учение Декарта и направление в философии и естествознании, продолжавшее его идеи, получило название картезианства. Он оказал значительное влияние на последующее развитие науки и философии, причем как идеализма, так и материализма. Учения Декарта о непосредственной достоверности самосознания, о врожденных идеях, об интуитивном характере аксиом, о противоположности материального и идеального явились опорой для развития идеализма. С другой стороны, учение Декарта о природе и его всеобщий механистический метод делают его философию одним из этапов материалистического мировоззрения нового времени.

В «Геометрии» (1637) Декарт впервые ввел понятия переменной величины и функции. Переменная величина у Декарта выступала в двойной форме: как отрезок переменной длины и постоянного направления -- текущая координата точки, описывающей своим движением кривую, и как непрерывная числовая переменная, пробегающая совокупность чисел, выражающих этот отрезок. Двоякий образ переменной обусловил взаимопроникновение геометрии и алгебры. У Декарта действительное число трактовалось как отношение любого отрезка к единичному, хотя сформулировал такое определение лишь И. Ньютон; отрицательные числа получили у Декарта реальное истолкование в виде отрицательных ординат. Декарт значительно улучшил систему обозначений, введя общепринятые знаки для переменных величин (x, y, z, ...) и коэффициентов (a, b, c, ...), а также обозначения степеней (x4, a5, ...). Запись формул у Декарта почти ничем не отличается от современной.

Декарт положил начало ряду исследований свойств уравнений: сформулировал правило знаков для определения числа положительных и отрицательных корней (правило Декарта), поставил вопрос о границах действительных корней и выдвинул проблему приводимости (представления целой рациональной функции с рациональными коэффициентами в виде произведения двух функций такого же рода), указал, что уравнение третьей степени разрешимо в квадратных радикалах и решается с помощью циркуля и линейки, когда оно приводимо.

В аналитической геометрии, которую одновременно с Декартом разрабатывал П. Ферма, основным достижением Декарта явился созданный им метод координат. В «Геометрии» Декарт изложил способ построения нормалей и касательных к плоским кривым (в связи с исследованиями линз) и применил его, в частности, к некоторым кривым четвертого порядка (так называемым овалам Декарта). Заложив основы аналитической геометрии, сам Декарт продвинулся в этой области недалеко - не рассматривались отрицательные абсциссы, не затронуты вопросы аналитической геометрии трехмерного пространства. Тем не менее его «Геометрия» оказала огромное влияние на развитие математики. В переписке Декарта содержатся и другие его открытия: вычисление площади циклоиды, проведение касательных к циклоиде, определение свойств логарифмической спирали. Из рукописей видно, что он знал соотношение между числами граней, вершин и ребер выпуклых многогранников (это соотношение было позднее открыто Эйлером).


Подобные документы

  • Анализ роли математики в оценке количественных и пространственных взаимоотношений объектов реального мира. Трактовка и обоснование математических теорем Ферма, Ролля, Лагранжа, Коши и Лопиталя. Обзор биографии, деятельности и трудов великих математиков.

    курсовая работа [467,9 K], добавлен 08.04.2013

  • Основные законы проективной геометрии. Понятие двойного отношения, параллельности и бесконечности. Теорема Дезарга и теорема Паскаля. Пространственная интерпретация теоремы Дезарга. Стереометрия помогает планиметрии. Окружность переходит в окружность.

    курсовая работа [866,1 K], добавлен 05.12.2013

  • Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.

    реферат [32,3 K], добавлен 14.07.2004

  • Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация [1,1 M], добавлен 20.09.2015

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат [25,9 K], добавлен 30.04.2011

  • Геометрия как раздел математики, изучающий пространственные структуры, отношения и их обобщения. Планиметрия, стереометрия, проективная геометрия. История развития науки. Исследование свойств плоских фигур. Сущность понятий "полупрямая", "треугольник".

    презентация [1,1 M], добавлен 16.10.2014

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.

    статья [16,4 K], добавлен 17.10.2009

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат [18,3 K], добавлен 24.05.2012

  • Утверждение великого французского математика Пьера Ферма, получившее название "Великая теорема Ферма". Элементарные алгебраические преобразования многочленов. Коэффициенты полиномов Чебышева и формулы Абеля. Система наименьших вычетов по модулю K.

    книга [150,6 K], добавлен 07.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.