Аналіз нелінійного перетворення стаціонарного гауссівського випадкового процесу

Побудова графіків реалізацій вхідного та вихідного процесів, розрахунок функцій розподілу, математичного сподівання, кореляційної функції. Поняття та принципи вивчення одномірної функції розподілу відгуку, порядок конструювання математичної моделі.

Рубрика Математика
Вид контрольная работа
Язык украинский
Дата добавления 08.11.2014
Размер файла 316,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Постановка задачі

математичний кореляційний одномірний відгук

Задана нелінійна безінерційна система, характеристики якої не залежать від часу. Математичною моделлю системи є оператор , який називається амплітудною характеристикою системи. На вхід системи подається стаціонарний випадковий процес (вплив), що має гауссівський розподіл миттєвих значень з параметрами . Вихідним є процес , що називається відгуком системи (рис 1.1), який є стаціонарним випадковим процесом.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рис 1.1.

Треба побудувати графіки можливих реалізацій вхідного та вихідного процесів, знайти одномірну функцію розподілу відгуку, його математичне сподівання, кореляційну функцію та проаналізувати отримані результати і зробити висновки.

2. Побудова графіків реалізацій вхідного та вихідного процесів

Оскільки система безінерційна, то миттєве значення вихідного процесу в довільний фіксований момент часу визначається значенням вхідного процесу в той же момент часу:

(2.1)

Визначимо діапазон практично можливих миттєвих значень вхідного процесу , для яких виконується умова:

(2.2)

Якщо вхідним є гауссівський стаціонарний випадковий процес, то для нього використовується правило «трьох »:

(2.3)

Згідно з (1.3) діапазон практично можливих значень:

(2.4)

Знайдемо діапазон практично можливих значень для заданих трьох значень математичного сподівання:

1) ;

2) ;

3) .

Вхідний процес отримаємо використовуючи таблицю чисел стандартної гауссівської випадкової величини. Для приведення стандартної гауссівської випадкової величини до випадкової гауссівської величини з необхідним математичним сподіванням і середньоквадратичним відхиленням використаємо формулу:

(2.5)

Для заданих трьох значень математичного сподівання розрахуємо 30 значень випадкової величини і розташуємо їх на вісі часу з кроком 0,1 секунда. Таким чином отримаємо три варіанти реалізації вхідного випадкового процесу.

Використовуючи відомий оператор системи , побудуємо графіки реалізацій вхідного () і вихідного () процесів.

1)

Діапазон можливих значень вихідного процесу:

2)

3. Розрахунок функції розподілу вхідного та вихідного процесів

За умовою вхідний процес є гауссівським випадковим процесом, тобто його функція розподілу визначається через функцію Лапласа за формулою:

(3.1)

Для заданих значень математично сподівання і середньоквадратичного відхилення знайдемо функції розподілу і побудуємо графіки:

1)

2)

3)

Знайдемо функцію розподілу вихідного процесу . Для заданої системи зворотною функцією є . Аналізуючи амплітудну характеристику системи (рис. 3.4) розглянемо два інтервали для :

1) При : .

2) При: ,

де

Тобто на цьому інтервалі функція розподілу має вигляд:

(3.2)

Остаточний вигляд для функції розподілу вихідного процесу:

(3.3)

Для заданих значень математичного сподівання і середньоквадратичного відхилення запишемо функції розподілу та побудуємо графіки:

1)

2)

3)

4. Розрахунок математичного сподівання вихідного процесу

Математичне сподівання вихідного процесу:

(4.1)

Для гауссівського вхідного процесу:

(4.2)

Підставивши (4.2) в (4.1) отримаємо:

. Введемо заміну:

. Тоді:

Для знаходження інтегралів скористаємося відомим співвідношенням:

(4.3)

Обчислимо значення математичного сподівання вихідного процесу для трьох значень математичного сподівання вхідного процесу:

0,45

0

-0,7975

1

0,2025

2

3,2025

5. Розрахунок кореляційної функції вихідного процесу

Для знаходження кореляційної функції вихідного процесу використаємо формулу:

, (5.1)

де , а , за умовою.

Визначимо перші три коефіцієнта розкладу кореляційної функції в ряд. Для цього введемо заміну:

.

1)

Відомо, що . Тоді:

Використовуючи (4.3) отримаємо:

2)

Відомо, що . Тоді:

3)

Відомо, що . Тоді:

Наближені вирази для кореляційної функції та її графіки для трьох значень математичного сподівання:

1) :

:

2) :

Висновки

Розраховані практично можливі значення для вхідного і вихідного процесів для трьох значень математичного сподівання:

[-1,35; 1,35]

[-0,35; 2,35]

[0,65; 3,35]

[-1; 0,8225]

[-1; 4,5225]

[-0,5775; 10,2225]

Отриманий загальний вираз для функції розподілу вихідного процесу:

Вираз для обчислення математичного сподівання вихідного процесу:

Визначені значення для математичного сподівання вихідного процесу для трьох значень математичного сподівання вхідного процесу:

0,45

0

-0,7975

1

0,2025

2

3,2025

Отримані вирази для перших трьох коефіцієнтів розкладу кореляційної функції вихідного процесу в ряд:

Наближені вирази для кореляційної функції вихідного процесу для трьох значень математичного сподівання вхідного процесу:

0

1

2

Література

1. Аналіз нелінійного перетворення стаціонарного гауссівського випадкового процесу. Методичні рекомендації до виконання курсової роботи з дисципліни «Теорія процесів та систем. Випадкові процеси» для студентів напрямку підготовки 050803 - Акустотехніка / Уклад.: О. В. Гармаш, Т. А. Горовецька, О. І. Красильніков. - К.: ВЦ «Принт-центр», 2008. - 44 с.

2. Тихонов В. И. Статистическая радиотехника. - М.: Сов. Радио, 1982. - 624 с.

3. Гнеденко Б. В. Курс теории вероятностей: Учебник. - М.: Едиториал УРСС, 2005. - 448 с.

4. Левин Б. Р. Теоретические основы статистической радиотехники. - М.: Сов. Радио, 1974. - 552 с.

Размещено на Allbest.ru


Подобные документы

  • Визначення імовірності певної події, яка дорівнює відношенню кількості сприятливих подій до загальної кількості можливих подій. Розрахунок імовірності несплати податків у зазначених підприємців. Математичне сподівання щодо розподілу дробового попиту.

    контрольная работа [28,3 K], добавлен 13.12.2010

  • Перетворення Фур'є як самостійна операція математичного аналізу. Амплітудний і фазовий спектри розкладу інтегралу Фур'є для заданої неперіодичної функції. Комплексна форма інтеграла Фур'є. Спектральна характеристика (щільність) неперіодичної функції.

    курсовая работа [235,5 K], добавлен 18.07.2010

  • Основні поняття теорії ймовірності. Аналіз дискретної випадкової величини, характеристика закону розподілу випадкової величини. Знайомство з властивостями функції розподілу. Графічне та аналітичне відображення законів ймовірності дискретних величин.

    реферат [134,7 K], добавлен 27.02.2012

  • Визначення ймовірності виходу приладу з ладу. Розв’язок задачі з використанням інтегральної формули Бернуллі та формулу Пуассона. Визначення математичного сподівання, середньоквадратичного відхилення, дисперсії, функції розподілу випадкової величини.

    контрольная работа [84,2 K], добавлен 23.09.2014

  • Функція розподілу випадкової величини. Найважливіші закони розподілу дискретних випадкових величин. Властивості функції розподілу. Дискретні і неперервні випадкові величини. Геометричний закон розподілу. Біноміальний розподіл випадкової величини.

    реферат [178,2 K], добавлен 26.01.2011

  • Знаходження імовірності за локальною теоремою Муавра-Лапласа. Формула Муавра-Лапласа, інтегральна теорема Лапласа. Дискретна випадкова величина, знаходження функції розподілу. Математичне сподівання і дисперсія випадкової величини; закон розподілу.

    контрольная работа [209,3 K], добавлен 10.04.2009

  • Неперервність функцій в точці, області, на відрізку. Властивості неперервних функцій. Точки розриву, їх класифікація. Знаходження множини значень функції та нулів функції. Розв’язування рівнянь. Дослідження функції на знак. Розв’язування нерівностей.

    контрольная работа [179,7 K], добавлен 04.04.2012

  • Знаходження ймовірності настання події у кожному з незалежних випробувань. Знаходження функції розподілу випадкової величини. Побудова полігону, гістограми та кумуляти для вибірки, поданої у вигляді таблиці частот. Числові характеристики ряду розподілу.

    контрольная работа [47,2 K], добавлен 20.11.2009

  • Математична обробка ряду рівноточних і нерівноточних вимірів. Оцінка точності функцій виміряних величин. Випадкові величини, їх характеристики і закони розподілу ймовірностей. Елементи математичної статистики. Статистична оцінка параметрів розподілу.

    лекция [291,4 K], добавлен 17.11.2008

  • Закон розподілення дискретної випадкової величини, подання в аналітичній формі за допомогою функції розподілення ймовірності. Числові характеристики дискретних випадкових величин. Значення критерію збіжності Пірсона. Аналіз оцінок математичного чекання.

    курсовая работа [105,2 K], добавлен 09.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.