Випадкова величина

Функція розподілу випадкової величини. Найважливіші закони розподілу дискретних випадкових величин. Властивості функції розподілу. Дискретні і неперервні випадкові величини. Геометричний закон розподілу. Біноміальний розподіл випадкової величини.

Рубрика Математика
Вид реферат
Язык украинский
Дата добавления 26.01.2011
Размер файла 178,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ТЕМА
ВИПАДКОВА ВЕЛИЧИНА
1 Випадкова величина. Функція розподілу випадкової величини

Зіставимо кожну елементарну подію конкретного випробування з деяким числом. Наприклад, розглянемо випробування, що полягає в підкиданні монети. Маємо простір елементарних подій - множину з двох можливих рівно ймовірних наслідків випробування: 1 - випадання "решки" та 2 - випадання герба. Введемо до розгляду функцію = f(), що визначається за формулами: f(1)=0, f(2)=1. Це - числова функція (випадкова величина), яка залежить від випадку. Позначимо її через :

Для значень, яких у результаті випробувань може рівно ймовірно набувати функція , застосуємо символи та . Відповідно з нашою угодою, вони дорівнюють

і

У загальному випадку задовільної випадкової величини позначатимемо її однією з грецьких літер ,,..., а значення, яких вона набуває літерами латинської абетки: х, y,..... Відповідність між цими значеннями та ймовірностями, з якими їх набуває така функція , зручно задати у вигляді табл. 1, що називається законом розподілу дискретної випадкової величини:

Таблиця 1

...

...

У випадку зазначеної конкретної випадкової величини, пов'язаної з випадінням сторін підкинутої монети, табл. 1 конкретизується у вигляді табл. 2:

Таблиця 2

0

1

1/2

1/2

Цю закономірність можна також наочно представити на площині xOy, розмістивши на горизонтальній осі значення і , а на вертикальній осі, що доцільно було перемістити з її традиційного положення - відповідні їм ймовірності (рис. 1). При цьому графік функції складається тільки з двох точок (,) і (,). В інших точках горизонтальної осі функція взагалі принципово не визначена.

Ще більш наочно закон розподілу дискретної випадкової величини зображається специфічною функцією

що називається функцією розподілу випадкової величини .

Рисунок 1

У відповідності з її визначенням, вона дає в точці x ймовірність того, що випадкова величина розташована на осі Ox зліва від цієї точки x. Зокрема, для випадкової величини, заданої законом розподілу в табл. 2, ця функція має складний вигляд із різними представленнями на різних інтервалах

На рис. 2 наведено її графік з двома неусувними розривами 1-го роду.

Рисунок 2

Розглянемо ще один приклад введення випадкової величини. Нехай є мішень - круг радіуса а, влучення до якого гарантовано. Як випадкову величину, що позначимо як , візьмемо відстань від центра мішені до точки влучення. Ймовірність того, що ця випадкова величина набуває різних значень r від нуля до а, обчислюється за формулою геометричної ймовірност:

При цьому функція розподілу

графік якої зображено на рис. 3, має вигляд

Рисунок 3

Модифікуємо попередній приклад: нехай всередині круга радіуса а, влучення до якого гарантовано, проведено два концентричні кола (рис. 4) з радіусами a/3 і 2a/ В залежності від відстані точки влучення від центра мішені стрілець одержує 10, 5 чи 1 бал, відповідно.

Рисунок 4

За випадкову величину, що позначимо як , візьмемо тепер кількість очок, набраних при пострілі по мішені. Її можливі значення: 10, 5, 1. Обчислимо ймовірності випадків прийняття цих значень величиною

,

,

При цьому закон розподілу випадкової величини має вигляд табл. 3:

Таблиця 3

1

5

10

5/9

1/3

1/9

За цим законом розподілу випадкової величини знаходимо функцію її розподілу та будуємо її графік (рис. 5).

Рисунок 5

Властивості функції розподілу:

1. F(x) - неубутна функція. Дійсно, якщо x1<x2 (рис. 6).

Рисунок 6

F(x2)=P(<x2)=P(<x1)+P(x1<<x2)>P(<x1)=F(x1); F(x1)<F(x2);

2. F(+)=1; F(-)=0; F(+)=P(<)=1;

P(-<<)=1; F(-)=0;

P(<)=P() - P()=F() - F().

Якщо функція розподілу в деякій точці =а має неусувний розрив 1-го роду - стрибок на величину р, (рис. 7) то Р(=а)=р.

Рисунок 7

Дійсно, розглянемо [а, b), b a+0.

P(=а)=.

Найбільш важливими типами випадкових величин є дискретні і неперервні випадкові величини, які будуть розглянуті більш докладно.

2 Дискретна випадкова величина

Випадкова величина називається дискретною, якщо її можливі значення можна перенумерувати.

Нехай х12,…,хn - можливі значення дискретної випадкової величини в порядку зростання.

Випадкові події [=x1], [=x2], …[=xn] утворять повну систему елементарних подій. При цьому

,

Закон розподілу дискретної випадкової величини можна задати таблицею (табл. 1) чи геометрично - точками на площині (xi, pi); або ламаною, що з'єднує ці точки та називається багатокутником розподілу (рис. 8):

Рисунок 8

Цьому закону розподілу є відповідною функція розподілу

F(x)=P(<x)=

або

де

Її графік наведено на рис. 9

Рисунок 9

Як видно з рис. 9, функція розподілу дискретної випадкової величини є кусково неперервною. У точці хi вона зростає на величину . При цьому

.

3 Найважливіші закони розподілу дискретних випадкових величин

Біноміальний розподіл. Розглядається серія з n випробувань, у кожному з яких подія А відбувається або не відбувається. Ймовірність появи події А в кожному випробуванні постійна і не залежить від результатів інших випробувань. Це схема Бернуллі:

Р(А)=р; .

Як випадкову величину, яку позначимо , розглянемо кількість появ події А у n випробуваннях. Не важко перевірити, що ймовірність появи події визначається формулою Бернуллі у вигляді

; (1)

де - кількість сполучень з елементів по (1).

Відповідний цїй формулі закон розподілу випадкової величини називається біноміальним, тому що його коефіцієнти збігаються з коефіцієнтами членів розкладання бінома Ньютона (p+q)n (табл. 4).

Таблиця 4

n

0

1

k

n

pn

qn

npqn-1

pn

Розподіл Пуассона. Якщо в біноміальному розподілі випадкової величини кількість випробувань і наслідків дуже велика, знаходження ймовірностей за формулою Бернуллі (1) стає обтяжливим у зв'язку з необхідністю обчислення факторіалів великого порядку. У цьому випадку було отримано наслідки формули Бернуллі, один з яких полягає у наступному.

Нехай кількість випробувань необмежено зростає, але так, щоб її добуток на ймовірність появи події A в кожному випробуванні, тобто , залишався скінченою величиною порядку одиниці. Це передбачає дуже мале значення ймовірності , отже розглядаються дуже рідкі події та дуже довгі серії випробувань. При формалізації відзначених умов у формулі Бернуллі (1) можна перейти до границі

або остаточно отримати формулу Пуассона для ймовірності появи разів дуже рідкої події A у практично нескінченних випробуваннях

Розподіл випадкової величина за цією формулою називається законом Пуассона (законом рідкісних подій). Число називається параметром розподілу. Цей закон можна подати у вигляді:

Таблиця 5

0

1

k

p

e-

e-

Розглянемо типову задачу, що приводить до розподілу Пуассона. Нехай подія А означає відмову складного пристрою протягом малого проміжку часу. Причиною відмови є вихід з ладу будь-якої деталі. Режим роботи пристрою не змінюється з часом, відмова окремих деталей відбувається незалежно одна від одної, причому за одиницю часу "в середньому" відбувається відмовлень.

При цих допущеннях з великим ступенем точності виконуються такі умови:

1. Ймовірність появи відмови на проміжку часу (0, Т) така сама, як і на задовільному проміжку довжиною T (t,t+T).

2. Появи відмовлень на проміжках часу, що не перекриваються, незалежні.

Ймовірність появи відмовлення за нескінченно малий проміжок часу визначається за формулою:

р(А)= t+o(t), t0.

4. Імовірність появи більше однієї відмови є о(t), t0.

Розіб'ємо інтервал (t,t+T) на n рівних частин .

Розглядатимемо реєстрацію відмови як окреме випробування

При цьому приходимо до розподілу Пуассона для кількості відмовлень за час Т

Геометричний закон розподілу. Проводиться серія випробувань до першої появи події А. Ймовірність появи події А в кожному випробуванні дорівнює р і не залежить від інших випробувань.

Як випадкову величину розглядатимемо кількість проведених випробувань, необхідних для першої появи події А. Очевидно, що закон розподілу цієї випадкової величини можна подати таблицею:

Таблиця 6

1

2

3

k

P

P

qp

q2p

qk-1p


Подобные документы

  • Основні поняття теорії ймовірності. Аналіз дискретної випадкової величини, характеристика закону розподілу випадкової величини. Знайомство з властивостями функції розподілу. Графічне та аналітичне відображення законів ймовірності дискретних величин.

    реферат [134,7 K], добавлен 27.02.2012

  • Імовірність несплати податку для кожного підприємця. Випадкова величина в інтервалі. Ряд розподілу добового попиту на певний продукт. Числові характеристики дискретної випадкової величини. Біноміальний закон розподілу, математичне сподівання величини.

    контрольная работа [152,5 K], добавлен 16.07.2010

  • Визначення кількості сполучень при дослідженні ймовірностей. Закон розподілу випадкової величини. Функція розподілу, знаходження середнього квадратичного відхилення. Визначення щільності розподілу ймовірностей. Закон неперервної випадкової величини.

    контрольная работа [71,3 K], добавлен 13.03.2015

  • Знаходження імовірності за локальною теоремою Муавра-Лапласа. Формула Муавра-Лапласа, інтегральна теорема Лапласа. Дискретна випадкова величина, знаходження функції розподілу. Математичне сподівання і дисперсія випадкової величини; закон розподілу.

    контрольная работа [209,3 K], добавлен 10.04.2009

  • Класична ймовірність події як відношення кількості сприятливих до загальної кількості можливих подій. Інтегральна теорема Мавра-Лапласа. Підпорядкування випадкової величини біноміальному закону розподілу з певними параметрами. Ряд розподілу цієї величини.

    задача [22,2 K], добавлен 14.06.2009

  • Знаходження ймовірності настання події у кожному з незалежних випробувань. Знаходження функції розподілу випадкової величини. Побудова полігону, гістограми та кумуляти для вибірки, поданої у вигляді таблиці частот. Числові характеристики ряду розподілу.

    контрольная работа [47,2 K], добавлен 20.11.2009

  • Математична обробка ряду рівноточних і нерівноточних вимірів. Оцінка точності функцій виміряних величин. Випадкові величини, їх характеристики і закони розподілу ймовірностей. Елементи математичної статистики. Статистична оцінка параметрів розподілу.

    лекция [291,4 K], добавлен 17.11.2008

  • Властивості числових характеристик системи випадкових величин. Обчислення кореляційного моменту. Ведення комплексної випадкової величини, характеристичні функції. Види збіжності випадкових величин. Приклади доказів граничних теорем теорії ймовірностей.

    реферат [113,9 K], добавлен 12.03.2011

  • Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.

    реферат [88,5 K], добавлен 02.02.2010

  • Закон розподілення дискретної випадкової величини, подання в аналітичній формі за допомогою функції розподілення ймовірності. Числові характеристики дискретних випадкових величин. Значення критерію збіжності Пірсона. Аналіз оцінок математичного чекання.

    курсовая работа [105,2 K], добавлен 09.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.