Теорія вірогідності

Класична ймовірність події як відношення кількості сприятливих до загальної кількості можливих подій. Інтегральна теорема Мавра-Лапласа. Підпорядкування випадкової величини біноміальному закону розподілу з певними параметрами. Ряд розподілу цієї величини.

Рубрика Математика
Вид задача
Язык украинский
Дата добавления 14.06.2009
Размер файла 22,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4

Завдання 1

В ящику 20 куль: 8 зелених і 12 синіх. З ящика навмання виймають одну кулю. Визначити ймовірність того, що ця куля:

а) зелена;

б) синя.

Розв'язок:

а) Позначимо за подію А ={вибрана куля - зелена} Тоді за означенням класичної імовірності імовірність події А дорівнюватиме відношенню кількості сприятливих подій до загальної кількості можливих подій. Кількість сприятливих подій - 8 (тому, що 8 зелених куль в ящику), загальна кількість можливих - 20 (тому, що загальна кількість кульок - 20).

- ймовірність того що вийнята куля - зелена

б) Позначимо за подію В ={вибрана куля синя} Тоді за означенням класичної імовірності імовірність події В дорівнюватиме відношенню кількості сприятливих подій до загальної кількості можливих подій. Кількість сприятливих подій - 12 (тому, що 12 синіх куль в ящику), загальна кількість можливих - 20 (тому, що загальна кількість кульок - 20).

- ймовірність того що вийнята куля - синя

Завдання 2

Імовірність несплати податків у кожного з n підприємців становить р. Визначити ймовірність того, що не сплатять податки не менше m1 і не більше m2 підприємців.

n=500; p=0,1; m1= 40; m2 =250.

Розв'язок:

q=1-p=0,9

За інтегральною теоремою Мавра-Лапласа, маємо:

Завдання 3

Задано ряд розподілу дробового попиту на певний продукт Х. Знайти числові характеристики цієї дискретної випадкової величини:

а) математичне сподівання М (Х);

б) дисперсію D (X);

в) середнє квадратичне відхилення уХ

Х

10

20

30

40

50

р

0,1

0,15

0,42

0,25

0,08

Розв'язок:

М (Х) = 0,1*10 + 20*0,15 + 30*0,42 + 40*0,25 + 50*0,08 = 1+3+12,6+10+4 = 30,6; - математичне сподівання

М (Х2) =936,36

Х2

100

400

900

1600

2500

р

0,1

0,15

0,42

0,25

0,08

М (Х2) = 0,1*100+400*0,15+900*0,42+1600*0,25+2500*0,08=1048

Dx= М (Х2) - М (Х2) =1048-936.36=111.64 - дисперсія

уХ = - середнє квадратичне відхилення

Завдання 4

Знаючи, що випадкова величина Х підпорядковується біноміальному закону розподілу з параметрами n, p записати ряд розподілу цієї величини і знайти основні числові характеристики:

а) математичне сподівання М (Х);

б) дисперсію D (X);

в) середнє квадратичне відхилення уХ

n=1; p=0,2

Розв'язок:

q=1-p=1-0,2=0,8

М (Х) =np=1*0.2=0.2 - математичне сподівання

D (X) =npq=4*0.2*0.8=0.64- дисперсія

уХ = - середнє квадратичне відхилення

Завдання 5

Побудувати графік щільності розподілу неперервної випадкової величини Х, яка має нормальний закон розподілу з математичним сподіванням М (Х) =а і проходить через задані точки

a)

а=3.

x

1

2

4

5

f (x)

0.05

0.24

0.24

0.05

г)

а=1.

X

-2

-1

3

4

f (x)

0.075

0.088

0.088

0.075

Завдання 6

Задано вибірку, яка характеризує місячний прибуток підприємців (у тис грн.):

*Скласти варіаційний ряд вибірки.

*Побудувати гістограму та полігон частот, розбивши інтервал на чотири-шість рівних підінтервалів.

*Обчислити моду, медіану, середнє арифметичне, дисперсію варіаційного ряду:

6, 10, 12, 11, 11, 14, 6, 8, 12, 10, 14, 8, 9, 11, 7, 7, 12, 10, 13,6.

Розв'язання:

Скласти варіаційний ряд вибірки.

Оскільки вибірка складається з 20 значень, то обсяг вибірки n=20.

Побудуємо варіаційний ряд вибірки:

6, 6, 6, 7, 7, 8, 8, 9,10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 14, 14.

2. Побудувати гістограму та полігон частот, розбивши інтервал на чотири-шість рівних підінтервалів.

У даній вибірці 9 різних варіант, запишемо їх частоти у вигляді статистичного розподілу:

Таблиця 1

хі 6 7 8 9 10 11 12 13 14

nі 3 2 2 1 3 3 3 1 2

Рис.1. Полігон розподілу частот.

Для побудови гістограми та полігону побудуємо інтервальний статистичний розподіл.

Виберемо S= 5 інтервалів, а довжину інтервалу обчислимо за формулою.

Тобто:

Складемо шкалу інтервалів. За початок першого інтервалу візьмемо

Варіанти, які співпадають із межами інтервалів, будемо включати в наступний інтервал, крім останнього.

Побудуємо гістограму частот. Для цього на осі ОХ нанесемо інтервали, а на ОУ щільності частот для кожного інтервалу.

Для побудови цього графіка відкладається крапка на висоті, відповідній частоті кожної варіанти. За варіанту приймемо середини інтервалів. Після цього крапки сполучаються відрізками прямих.

3. Обчислити моду, медіану, середнє арифметичне, дисперсію та ексцес варіаційного ряду:

Визначимо значення емпіричних показників.

Статистичний розподіл вибірки встановлює зв`язок між рядом варіант, що зростає або спадає, і відповідними частотами. Він може бути представлений таблицею розподілу рівновіддалених варіант, прийнявши за варіанти середини інтервалів хі.

Для обчислень перейдемо від одержаного інтервального розподілу до розподілу рівновіддалених варіант, прийнявши за варіанти середини інтервалів хі. Знайдемо вибіркову середню, дисперсію, вибіркове середньоквадратичне відхилення за методом добутку.

Запишемо:

варіанти хі* в перший стовпчик;

відповідні варіантам частоти, в другий стовпчик;

за уявний нуль виберемо варіанту, яка має найбільшу частоту, тобто С= 19,4;

одержані умовні варіанти запишемо в третій стовпчик;

добутки niui, niui2 та ni (ui+1) 2 запишемо в наступні стовпчики.

Контроль проведемо за формулою

Маємо: 54+2*22+20=118

118=118

Обчислимо умовні моменти розподілу від першого до четвертого порядків включно:

Маємо:

Визначимо числові характеристики за допомогою умовних моментів розподілу

1,1*1,6+19,4=21,2

= =8,3635

Медіанним частинним інтервалом буде третій інтервал, оскільки це перший інтервал, для якого сума частот усіх попередніх частинних інтервалів з даним включно перевищує половину обсягу вибірки:

5+5+2=12

Для визначення моди інтервального статистичного розподілу необхідно знайти модальний інтервал, тобто такий частинний інтервал, що має найбільшу частоту появи.

Модальним частинним інтервалом буде 2 інтервал.

=20,2 =18,6

= 2 = 5

= 1,6 = 1,6

Ме - 1=1 = 5

= 2

Використовуючи лінійну інтерполяцію, моду обчислимо за формулою:

Відповідь: 21,2; 8,3635;

Завдання 7

Перевірити, чи справджується статистична гіпотеза про нормальний розподіл генеральної сукупності за даними вибірки.

хі 1 5 7 9 14 18 23 34 37

mі 1 2 3 7 12 24 14 1 1

Розв'язання:

Розіб`ємо інтервал [1; 37] на такі шість частинних інтервалів довжиною h=6:

хі 1 5 7 9 14 18 23 34 37

mі 1 2 3 7 12 24 14 1 1

[1;

7), [7; 13), [13; 19), [19; 25), [25; 31), [31; 37].

новими варіантами будуть середини інтервалів:

х1= (1+7) /2=4;

х2= (7+13) /2=10;

х3= (13+19) /2=16;

х4= (19+25) /2=22;

х5= (25+31) /2=28;

х6= (31+37) /2=34.

Як частоти ni варіант хі візьмемо суму частот варіант, які потрапили у відповідний і-тий інтервал. Запишемо такий статистичний розподіл рівновіддалених варіант:

хі 4 10 16 22 28 34

ni 3 10 36 14 0 2

Спочатку знайдемо вибіркове середнє, дисперсію, вибіркове середньоквадратичне відхилення. За уявний нуль виберемо варіанту, яка має найбільшу частоту, тобто С= 16.

Обчислимо умовні моменти розподілу:

Маємо:

Визначимо числові характеристики за допомогою умовних моментів розподілу

0,061*6+16=16,366

= =29,77

Перевіримо гіпотезу про нормальний розподіл генеральної сукупності Х. Для цього необхідно знайти теоретичні частоти, ураховуючи, що n=65, h=6 за формулою:

Значення диференціальної функції Лапласа.

В перший стовпчик якої запишемо номер інтервалу;

В другий - варіанти, третій обчислимо за формулою. В четвертий стовпчик запишемо відповідні значення функцій Лапласа, які візьмемо із значень таблиці ц (u).

В п`ятий стовпчик запишемо обчислені теоретичні частоти.

Використавши критерій Пірсона зробимо висновок про можливість розподілу величин Х згідно з нормальним законом.

З таблиці додатку для критичних точок розподілу Х2, числу вільних степенів і рівнем значущості а, заходимо критичні точки. Значення критичних точок при різних б менше, ніж спостережене значення.

Так як, то є підстави відкидати гіпотезу про нормальний розподіл генеральної сукупності ознаки Х, тобто емпіричні і теоретичні частоти відрізняються суттєво, а це якраз і свідчить, що дані вибірки не співпадають з гіпотезою про нормальний розподіл генеральної сукупності.


Подобные документы

  • Визначення кількості сполучень при дослідженні ймовірностей. Закон розподілу випадкової величини. Функція розподілу, знаходження середнього квадратичного відхилення. Визначення щільності розподілу ймовірностей. Закон неперервної випадкової величини.

    контрольная работа [71,3 K], добавлен 13.03.2015

  • Основні поняття теорії ймовірності. Аналіз дискретної випадкової величини, характеристика закону розподілу випадкової величини. Знайомство з властивостями функції розподілу. Графічне та аналітичне відображення законів ймовірності дискретних величин.

    реферат [134,7 K], добавлен 27.02.2012

  • Знаходження імовірності за локальною теоремою Муавра-Лапласа. Формула Муавра-Лапласа, інтегральна теорема Лапласа. Дискретна випадкова величина, знаходження функції розподілу. Математичне сподівання і дисперсія випадкової величини; закон розподілу.

    контрольная работа [209,3 K], добавлен 10.04.2009

  • Функція розподілу випадкової величини. Найважливіші закони розподілу дискретних випадкових величин. Властивості функції розподілу. Дискретні і неперервні випадкові величини. Геометричний закон розподілу. Біноміальний розподіл випадкової величини.

    реферат [178,2 K], добавлен 26.01.2011

  • Визначення імовірності певної події, яка дорівнює відношенню кількості сприятливих подій до загальної кількості можливих подій. Розрахунок імовірності несплати податків у зазначених підприємців. Математичне сподівання щодо розподілу дробового попиту.

    контрольная работа [28,3 K], добавлен 13.12.2010

  • Імовірність несплати податку для кожного підприємця. Випадкова величина в інтервалі. Ряд розподілу добового попиту на певний продукт. Числові характеристики дискретної випадкової величини. Біноміальний закон розподілу, математичне сподівання величини.

    контрольная работа [152,5 K], добавлен 16.07.2010

  • Знаходження ймовірності настання події у кожному з незалежних випробувань. Знаходження функції розподілу випадкової величини. Побудова полігону, гістограми та кумуляти для вибірки, поданої у вигляді таблиці частот. Числові характеристики ряду розподілу.

    контрольная работа [47,2 K], добавлен 20.11.2009

  • Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.

    реферат [88,5 K], добавлен 02.02.2010

  • Визначення ймовірності виходу приладу з ладу. Розв’язок задачі з використанням інтегральної формули Бернуллі та формулу Пуассона. Визначення математичного сподівання, середньоквадратичного відхилення, дисперсії, функції розподілу випадкової величини.

    контрольная работа [84,2 K], добавлен 23.09.2014

  • Необхідні поняття теорії графів. Задача про максимальний потік. Алгоритм Форда знаходження максимального потоку. Модифікація алгоритму Форда розв’язання задачі максимізації кількості призначень у задачах розподілу. Результати числового експерименту.

    курсовая работа [499,9 K], добавлен 18.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.