Вычисление определенного интеграла

Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

Рубрика Математика
Вид методичка
Язык русский
Дата добавления 01.07.2009
Размер файла 327,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вычисление определенного интеграла

Екатеринбург

2006

Вычисление определенного интеграла

Введение

Задача численного интегрирования функций заключается в вычислении приближенного значения определенного интеграла:

, (1)

на основе ряда значений подынтегральной функции .{ f(x) |x=xk = f(xk) = yk}.

Формулы численного вычисления однократного интеграла называются квадратурными формулами, двойного и более кратного - кубатурными.

Обычный прием построения квадратурных формул состоит в замене подынтегральной функции f(x) на отрезке [a,b] интерполирующей или аппроксимирующей функцией g(x) сравнительно простого вида, например, полиномом, с последующим аналитическим интегрированием. Это приводит к представлению

В пренебрежении остаточным членом R[f] получаем приближенную формулу

.

Обозначим через yi = f(xi) значение подинтегральной функции в различных точках на [a,b]. Квадратурные формулы являются формулами замкнутого типа, если x0=a , xn=b.

В качестве приближенной функции g(x) рассмотрим интерполяционный полином на в форме полинома Лагранжа:

,

где

, при этом , где - остаточный член интерполяционной формулы Лагранжа.

Формула (1) дает

, (2)

где

. (3)

В формуле (2) величины {} называются узлами, {} - весами, - погрешностью квадратурной формулы. Если веса {} квадратурной формулы вычислены по формуле (3), то соответствующую квадратурную формулу называют квадратурной формулой интерполяционного типа.

Подведем итог.

1. Веса {} квадратурной формулы (2) при заданном расположении узлов не зависят от вида подынтегральной функции.

2. В квадратурных формулах интерполяционного типа остаточный член Rn[f] может быть представлен в виде значения конкретного дифференциального оператора на функции f(x). Для

.

3. Для полиномов до порядка n включительно квадратурная формула (2) точна, т.е. . Наивысшая степень полинома, для которого квадратурная формула точна, называется степенью квадратурной формулы.

Рассмотрим частные случаи формул (2) и (3): метод прямоугольников, трапеций, парабол (метод Симпсона). Названия этих методов обусловлены геометрической интерпретацией соответствующих формул.

Метод прямоугольников

Определенный интеграл функции от функции f(x): численно равен площади криволинейной трапеции, ограниченной кривыми у=0, x=a, x=b, y=f(x) (рисунок. 1).

Рис. 1 Площадь под кривой y=f(x)

Для вычисления этой площади весь интервал интегрирования [a,b] разбивается на n равных подинтервалов длины h=(b-a)/n. Площадь под подынтегральной кривой приближенно заменяется на сумму площадей прямоугольников, как это показано на рисунке (2).

Рис. 2 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольников

Сумма площадей всех прямоугольников вычисляется по формуле

(4)

Метод, представленный формулой (4), называется методом левых прямоугольников, а метод, представленный формулой(5) - методом правых прямоугольников:

(5)

Погрешность вычисления интеграла определяется величиной шага интегрирования h. Чем меньше шаг интегрирования, тем точнее интегральная сумма S аппроксимирует значение интеграла I. Исходя из этого строится алгоритм для вычисления интеграла с заданной точностью. Считается, что интегральная сумма S представляет значение интеграла I c точностью eps, если разница по абсолютной величине между интегральными суммами и , вычисленными с шагом h и h/2 соответственно, не превышает eps.

Метод средних прямоугольников

Для нахождения определенного интеграла методом средних прямоугольников площадь, ограниченная прямыми a и b, разбивается на n прямоугольников с одинаковыми основаниями h, высотами прямоугольников будут точки пересечения функции f(x) с серединами прямоугольников (h/2). Интеграл будет численно равен сумме площадей n прямоугольников (рисунок 3).

Рис. 3 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольников

,

n - количество разбиений отрезка [a,b].

Метод трапеций

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у1, у2, у3,..уn, где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).

Рис. 4 Площадь под кривой y=f(x) аппроксимируется суммой площадей прямоугольных трапеций.

n - количество разбиений

(6)

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования [a,b] разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).

Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка

Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках :

Проинтегрируем на отрезке .:

Введем замену переменных:

Учитывая формулы замены,

Выполнив интегрирование, получим формулу Симпсона:

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:

В формуле параболы значение функции f(x) в нечетных точках разбиения х1, х3, ..., х2n-1 имеет коэффициент 4, в четных точках х2, х4, ..., х2n-2 - коэффициент 2 и в двух граничных точках х0=а, хn =b - коэффициент 1.

Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке [a, b] приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на [a, b] непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М - наибольшее значение на отрезке [a, b]. Так как n4 растет быстрее, чем n2, то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.

Пример

Вычислим интеграл

Этот интеграл легко вычисляется:

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения , а также полуцелых точках .

По формуле средних прямоугольников получим Iпрям=0.785606 (погрешность равна 0.027%), по формуле трапеций Iтрап=0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл

,

но теперь по формуле Симпсона при n=4. Разобьем отрезок [0, 1] на четыре равные части точками х0=0, х1=1/4, х2=1/2, х3=3/4, х4=1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у0=1,0000, у1=0,8000, у2=0,6667, у3=0,5714, у4=0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f(4)(x)=24/(1+x)5 , откуда следует, что на отрезке [0, 1] . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880 44)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.

Сравнение методов по точности

Сравним методы по точности, для этого произведем вычисления интеграла функций y=x, y=x+2, y=x2, при n=10 и n=60, a=0, b=10. Точное значение интегралов составляет соответственно: 50, 70, 333.(3)

таблица 1

метод

n

x

x+2

x2

Метод средних прямоугольников

10

50

70

332.5

Метод правых прямоугольников

10

45

65

285

Метод трапеции

10

50

70

335

Формула Симпсона

10

50

70

333.333

Метод средних прямоугольников

60

50

70

333.310

Метод правых прямоугольников

60

49.1667

69.1667

325.046

Метод трапеции

60

50

70

333.379

Формула Симпсона

60

50

70

333.333

Из таблицы 1 видно, что наиболее точным является интеграл, найденный по формуле Симпсона, при вычислении линейных функций y=x, y=x+2 также достигается точность методами средних прямоугольников и методом трапеций, метод правых прямоугольников является менее точным. Из таблицы 1 видно, что при увеличении количества разбиений n (увеличения числа интеграций) повышается точность приближенного вычисления интегралов

Задание на лабораторную работу

1) Написать программы вычисления определенного интеграла методами: средних, правых прямоугольников, трапеции и методом Симпсона. Выполнить интегрирование следующих функций:

1. f(x)=x

f(x)=x2

f(x)= x3

f(x)= x4

на отрезке [0, 1] с шагом , ,

2. f(x)=

f(x)=

f(x)=

3. Выполнить вариант индивидуального задания (таблица 2)

Таблица 2 Индивидуальные варианты задания

Функция f(x)

Отрезок интегрирования [a,b]

1

[1;3]

2

[1;3]

3

[0;2]

4

[2;4]

5

[1;3]

6

[0;2]

7

[0;2]

8

[1;3]

9

[0;2]

10

[0;2]

11

[1;3]

12

[1;3]

13

[0;2]

14

[2;4]

15

[1;3]

16

[0;2]

17

[0;2]

18

[1;3]

19

[0;2]

20

[0;2]

21

[1;3]

22

[1;3]

23

[0;2]

24

[2;4]

25

[1;3]

26

[0;2]

27

[0;2]

28

[1;3]

29

[0;2]

30

[0;2]

2) Провести сравнительный анализ методов.

Вычисление определенного интеграла: Методические указания к лабораторной работе по дисциплине «Вычислительная математика» / сост. И.А.Селиванова. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2006. 14 с.

Указания предназначены для студентов всех форм обучения специальности 230101 - «Вычислительные машины, комплексы, системы и сети» и бакалавров направления 230100 - «Информатика и вычислительная техника». Составитель Селиванова Ирина Анатольевна


Подобные документы

  • Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.

    презентация [120,3 K], добавлен 18.04.2013

  • Выбор точных методов численного интегрирования при наибольшем количестве разбиений. Вычисление интеграла аналитически, методом средних прямоугольников, трапеций, методом Симпсона. Вычисление интеграла методом Гаусса: двухточечная и трехточечная схема.

    курсовая работа [366,2 K], добавлен 25.12.2012

  • Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.

    презентация [96,6 K], добавлен 18.09.2013

  • Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.

    презентация [174,5 K], добавлен 18.09.2013

  • Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.

    контрольная работа [459,6 K], добавлен 16.04.2010

  • Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.

    презентация [159,1 K], добавлен 18.09.2013

  • Определение определенного интеграла, его свойства. Длина дуги кривой. Площадь криволинейной трапеции. Площадь поверхности вращения. Площади фигур, ограниченных графиками функций, ограниченных линиями, заданными уравнениями. Вычисление объемов тел.

    контрольная работа [842,6 K], добавлен 10.02.2017

  • Построение квадратурной формулы максимальной степени точности. Определение алгебраической степени точности указанной квадратурной формулы. Сравнительный анализ квадратурных формул средних прямоугольников и трапеций на примере вычисления интеграла.

    лабораторная работа [195,9 K], добавлен 21.12.2015

  • Общая схема применения определенного интеграла, правила и принципы реализации данного процесса. Вычисления координат центра тяжести плоских фигур. Решения задач на вычисление силы взаимодействия двух материальных тел, вращающихся вокруг неподвижной оси.

    методичка [195,5 K], добавлен 15.06.2015

  • Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.

    контрольная работа [345,3 K], добавлен 22.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.