Техника интегрирования и приложения определенного интеграла
Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 16.04.2010 |
Размер файла | 459,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Контрольная работа
по теме «Техника интегрирования и приложения определенного интеграла»
№ 314
Найти неопределенные интегралы:
№ 335
Найти определенный интеграл:
№ 356
Найти:
1. точное значение интеграла по формуле Ньютона-Лейбница;
2. приближенное значение интеграла по формуле трапеций, разбивая отрезок интегрирования на 8 равных частей и производя вычисления с округлением до 4 десятичных знаков;
3. относительную погрешность.
Решение:
1.
2.
, где
3,8030 |
||
№ 377
Пределы интегрирования по x от 0 до 4:
Пределы интегрирования по y от 0 до 8:
Координаты центра тяжести данной фигуры (2,4; 4,6).
№ 398
Вычислить несобственный интеграл или установить его расходимость:
Несобственный интеграл вычислен и равен 1, следовательно он сходится.
№451
1. построить на плоскости хОу область интегрирования;
2. изменить порядок интегрирования и вычислить площадь области при заданном и измененном порядках интегрирования;
Решение:
1. Пределы внешнего интеграла по переменной х - числа 1 и 5 указывают на то, что область D ограничена слева прямой х = 1 и справа х = 5.
Пределы внутреннего интеграла по переменной у - указывают на то, что область D ограничена снизу параболой и сверху линией .
2. Чтобы изменить порядок интегрирования, установим пределы интегрирования для внешнего интеграла по переменной у. Как видно из рисунка, наименьшее значение которое принимает у в точке А(1;0) равно 0, а наибольшее значение в точке В(5; 4) равно 4. Т.О. новые пределы интегрирования: 0 - нижний, 4 - верхний.
Определим пределы для внутреннего интеграла по переменной х. Выразим х из уравнений:
Подобные документы
Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.
методичка [327,4 K], добавлен 01.07.2009Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.
контрольная работа [345,3 K], добавлен 22.08.2009Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Нахождение площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.
контрольная работа [59,8 K], добавлен 05.03.2011Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.
контрольная работа [111,8 K], добавлен 28.03.2014Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.
контрольная работа [251,2 K], добавлен 28.03.2014Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, как предел интегральной суммы. Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница. Геометрический и механический смысл определенного интеграла.
реферат [576,4 K], добавлен 30.10.2010Нахождение статических моментов и центра тяжести кривой. Нахождение статических моментов и центра тяжести плоской фигуры. Первая и вторая теоремы Гульдина. Нахождение объема тела вращения плоской фигуры. Использование интеграла вместо обыкновенной суммы.
курсовая работа [275,3 K], добавлен 30.12.2011Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.
презентация [174,5 K], добавлен 18.09.2013Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.
презентация [120,3 K], добавлен 18.04.2013Вычисление площадей плоских фигур. Нахождение определенного интеграла функции. Определение площади под кривой, площади фигуры, заключенной между кривыми. Вычисление объемов тел вращения. Предел интегральной суммы функции. Определение объема цилиндра.
презентация [159,1 K], добавлен 18.09.2013