Исчисление физических величин с помощью интегрирования

Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 28.03.2014
Размер файла 111,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задания

Задание 1

Разложить в ряд Фурье функцию.

на отрезке

Решение:

Функция нечетная поэтому

Находим коэффициенты Фурье :

Ряд Фурье имеет вид:

Задание 2

Изменить порядок интегрирования.

Решение:

1.

Сделаем чертеж:

Из чертежа видим, что предел интегрирования по х [0; 1]

Найдем предел интегрирования по у [х; 1]

2.

Сделаем чертеж:

Из чертежа видим, что предел интегрирования по у:

Найдем предел интегрирования по х:

предел интегрирования по х:

Задание 3

Найти площадь фигуры, ограниченной графиками функций с помощью двойного интеграла:

Решение:

Сделаем чертеж:

Из чертежа видим, что предел интегрирования по у:

Найдем предел интегрирования по х:

предел интегрирования по х:

Ответ:

Задание 3

Найти объем тела, ограниченного поверхностями с помощью тройного интеграла:

Решение:

Сделаем чертеж:

интегрирование интеграл функция предел

Из чертежа видим, что предел интегрирования по у:

Из чертежа видим, что предел интегрирования по z:

предел интегрирования по х:

Ответ:

Список использованной литературы

1. Выгодский М.Я. Справочник по высшей математике. - М.: АСТ: Астрель, 2006. - 991с.

2. Зимина О.В., Кириллов А.И., Сальникова Т.А. Высшая математика. Под ред. А.И. Кирилова. - 3-е изд., испр. - М.: ФИЗМАТЛИТ, 2006. - 368с.

3. Выгодский М.Я. Справочник по элементарной математике. - М.: АСТ: Астрель, 2007. - 509 с.

4. Красс М.С., Чупрыков Б.П. Математика для экономистов. - СПб.: Питер 2007. - 464 с.

5. Пискунов Н.С. Дифференциальное и интегральное исчисления. - М.: ИНТЕГРАЛ-ПРЕСС, 2004.

Размещено на Allbest.ru


Подобные документы

  • Изменение порядка интегрирования функции. Расчет площади фигуры, ограниченной графиками функций. Поиск предела интегрирования. Определение производной скалярного поля в точке по направлению вектора. Поиск объема тела, ограниченного поверхностями.

    контрольная работа [249,8 K], добавлен 28.03.2014

  • Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.

    контрольная работа [233,2 K], добавлен 28.03.2014

  • Поиск площади фигуры, ограниченной графиками функций с помощью двойного интеграла. Получение вращением объема тела вокруг оси ОХ фигуры, ограниченной указанными линиями. Пределы интегрирования в двойном интеграле по области, ограниченной линиями.

    контрольная работа [166,9 K], добавлен 28.03.2014

  • Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.

    контрольная работа [392,3 K], добавлен 14.12.2012

  • Поиск общего интеграла дифференциального уравнения. Расстановка пределов интегрирования. Координаты вершины параболы. Объем тела, ограниченного поверхностями. Вычисление криволинейного интеграла. Полный дифференциал функции. Вычисление дуги цепной линии.

    контрольная работа [298,1 K], добавлен 28.03.2014

  • Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.

    контрольная работа [459,6 K], добавлен 16.04.2010

  • Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа [257,4 K], добавлен 23.02.2011

  • Особенности вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Определение площадей плоских фигур, ограниченных линиями, с использованием метода интегрирования в курсе математического анализа.

    презентация [67,9 K], добавлен 17.09.2013

  • Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.

    презентация [73,1 K], добавлен 18.09.2013

  • Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.

    задача [484,3 K], добавлен 02.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.