Исчисление физических величин с помощью интегрирования
Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.03.2014 |
Размер файла | 111,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Задания
Задание 1
Разложить в ряд Фурье функцию.
на отрезке
Решение:
Функция нечетная поэтому
Находим коэффициенты Фурье :
Ряд Фурье имеет вид:
Задание 2
Изменить порядок интегрирования.
Решение:
1.
Сделаем чертеж:
Из чертежа видим, что предел интегрирования по х [0; 1]
Найдем предел интегрирования по у [х; 1]
2.
Сделаем чертеж:
Из чертежа видим, что предел интегрирования по у:
Найдем предел интегрирования по х:
предел интегрирования по х:
Задание 3
Найти площадь фигуры, ограниченной графиками функций с помощью двойного интеграла:
Решение:
Сделаем чертеж:
Из чертежа видим, что предел интегрирования по у:
Найдем предел интегрирования по х:
предел интегрирования по х:
Ответ:
Задание 3
Найти объем тела, ограниченного поверхностями с помощью тройного интеграла:
Решение:
Сделаем чертеж:
интегрирование интеграл функция предел
Из чертежа видим, что предел интегрирования по у:
Из чертежа видим, что предел интегрирования по z:
предел интегрирования по х:
Ответ:
Список использованной литературы
1. Выгодский М.Я. Справочник по высшей математике. - М.: АСТ: Астрель, 2006. - 991с.
2. Зимина О.В., Кириллов А.И., Сальникова Т.А. Высшая математика. Под ред. А.И. Кирилова. - 3-е изд., испр. - М.: ФИЗМАТЛИТ, 2006. - 368с.
3. Выгодский М.Я. Справочник по элементарной математике. - М.: АСТ: Астрель, 2007. - 509 с.
4. Красс М.С., Чупрыков Б.П. Математика для экономистов. - СПб.: Питер 2007. - 464 с.
5. Пискунов Н.С. Дифференциальное и интегральное исчисления. - М.: ИНТЕГРАЛ-ПРЕСС, 2004.
Размещено на Allbest.ru
Подобные документы
Изменение порядка интегрирования функции. Расчет площади фигуры, ограниченной графиками функций. Поиск предела интегрирования. Определение производной скалярного поля в точке по направлению вектора. Поиск объема тела, ограниченного поверхностями.
контрольная работа [249,8 K], добавлен 28.03.2014Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.
контрольная работа [233,2 K], добавлен 28.03.2014Поиск площади фигуры, ограниченной графиками функций с помощью двойного интеграла. Получение вращением объема тела вокруг оси ОХ фигуры, ограниченной указанными линиями. Пределы интегрирования в двойном интеграле по области, ограниченной линиями.
контрольная работа [166,9 K], добавлен 28.03.2014Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.
контрольная работа [392,3 K], добавлен 14.12.2012Поиск общего интеграла дифференциального уравнения. Расстановка пределов интегрирования. Координаты вершины параболы. Объем тела, ограниченного поверхностями. Вычисление криволинейного интеграла. Полный дифференциал функции. Вычисление дуги цепной линии.
контрольная работа [298,1 K], добавлен 28.03.2014Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.
контрольная работа [459,6 K], добавлен 16.04.2010Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
контрольная работа [257,4 K], добавлен 23.02.2011Особенности вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Определение площадей плоских фигур, ограниченных линиями, с использованием метода интегрирования в курсе математического анализа.
презентация [67,9 K], добавлен 17.09.2013Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.
презентация [73,1 K], добавлен 18.09.2013Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.
задача [484,3 K], добавлен 02.10.2009