Неопределенные интегралы

Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 28.03.2014
Размер файла 251,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Задание 1

Найти неопределенные интегралы

Решение

Сделаем замену

Воспользуемся формулой интегрирования по частям.

Вычислим получившиеся интегралы по отдельности:

2. Задание 2

Вычислить определенный интеграл:

- по формуле Ньютона-Лейбница;

Решение

Формула Ньютона-Лейбница

Сделаем замену

3. Задание 3

Вычислить несобственный интеграл или доказать его расходимость.

Решение

4. Задание 4

Вычислить площадь фигуры ограниченной кардиоидой

Решение

Сделаем чертеж:

0

4

3,5

2.8

2

0

-2

-2,8

-3,5

-4

На промежутке

Вычислим площадь фигуры с пределами интегрирования а= и b= 0.

неопределенный интеграл расходимость предел

Ответ:

5. Задание 5

В двойном интеграле расставьте пределы интегрирования двумя способами (меняя порядок интегрирования) и вычислите интеграл.

Решение

Сделаем чертеж области D:

I способ:

Расставим пределы интегрирования:

II способ:

6. Задание 6

Вычислить криволинейный интеграл

,

где L - путь, соединяющий точки А (-2; 0) и В (0; 2) по

1) прямой ;

2) ломаной линии АСВ, где С (-2; 2);

3) окружности

Решение

1.

2. Разбиваем замкнутый путь АСВА на три участка АС, СВ, ВА

На участке АС принимаем за параметр ординату, при этом х=-2, dx=0, на участке СВ, абсциссу, при этом у=2, dy=0, на участке ВА ординату, при чем у=х+2, dx=dy

3. окружности

Список литературы

1. Выгодский М.Я. Справочник по высшей математике. - М.: АСТ: Астрель, 2006. - 991 с.

2. Зимина О.В., Кириллов А.И., Сальникова Т.А. Высшая математика. Под ред. А.И. Кирилова. - 3-е изд., испр. - М.: ФИЗМАТЛИТ, 2006. - 368 с.

3. Выгодский М.Я. Справочник по элементарной математике. - М.: АСТ: Астрель, 2007. - 509 с.

4. Красс М.С., Чупрыков Б.П. Математика для экономистов. - СПб.: Питер 2007. - 464 с.

Размещено на Allbest.ru


Подобные документы

  • Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Нахождение площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.

    контрольная работа [59,8 K], добавлен 05.03.2011

  • Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.

    контрольная работа [123,7 K], добавлен 14.01.2015

  • Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.

    контрольная работа [283,1 K], добавлен 01.03.2011

  • Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.

    контрольная работа [459,6 K], добавлен 16.04.2010

  • Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.

    контрольная работа [392,3 K], добавлен 14.12.2012

  • Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.

    контрольная работа [345,3 K], добавлен 22.08.2009

  • Рассмотрение основных способов решения задач на вычисление неопределенных и определенных интегралов по формулам Ньютона-Лейбница и Симпсона. Ознакомление с примерами нахождения области, ограниченной линиями, и объема тела, ограниченного поверхностями.

    контрольная работа [194,2 K], добавлен 28.03.2014

  • Свойства и характеристика интегралов с бесконечными пределами, признаки их сходимости. Расчет несобственных интегралов с бесконечными пределами. Определение несобственного интеграла от разрывной функции с аналитической и геометрической точки зрения.

    реферат [144,5 K], добавлен 23.08.2009

  • Вычисление предела функции, не используя правило Лопиталя. Нахождение производной функции и построение ее графика. Исследование неопределенных интегралов и выполнение проверки дифференцированием. Вычисление площади фигуры, ограниченной графиками функций.

    контрольная работа [317,3 K], добавлен 25.03.2014

  • Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.

    контрольная работа [153,6 K], добавлен 19.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.