Основы математики
Вероятность появления события в серии из независимых испытаний. Закон распределения дискретной случайной, интегральной, дифференциальной, имперической функции распределения, математическое ожидание, дисперсия, и среднее квадратическое отклонение.
Рубрика | Математика |
Предмет | Математика |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | Вика |
Дата добавления | 15.11.2010 |
Размер файла | 397,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.
контрольная работа [86,4 K], добавлен 26.02.2012Среднее арифметическое (математическое ожидание). Дисперсия и среднеквадратическое отклонение случайной величины. Третий центральный момент и коэффициент асимметрии. Законы распределения. Построение гистограммы. Критерий Пирсона. Доверительный интервал.
курсовая работа [327,1 K], добавлен 29.03.2013Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.
контрольная работа [36,5 K], добавлен 14.11.2010Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.
контрольная работа [87,2 K], добавлен 29.01.2014Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.
контрольная работа [59,7 K], добавлен 26.07.2010Математическое ожидание дискретной случайной величины, его свойства и определение. Дисперсия и формула для ее вычисления. Среднее квадратическое отклонение. Ковариация и коэффициент корреляции. Коррелированные и некоррелированные случайные величины.
курсовая работа [133,7 K], добавлен 05.06.2011Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.
контрольная работа [106,1 K], добавлен 23.06.2009Система линейных уравнений. Векторная алгебра, линейные операции для векторов, векторное (линейное) пространство. Случайные события и величины, плотность распределения вероятности, математическое ожидание, дисперсия, среднее квадратическое отклонение.
методичка [232,1 K], добавлен 18.05.2010Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.
контрольная работа [91,7 K], добавлен 15.11.2011Понятие непрерывной случайной величины, её значения на числовых промежутках. Определение закона распределения, его функции. Плотность распределения числовых характеристик вероятности. Математическое ожидание, дисперсия и среднеквадратичное отклонение.
лекция [575,9 K], добавлен 17.08.2015