Основы математики

Вероятность появления события в серии из независимых испытаний. Закон распределения дискретной случайной, интегральной, дифференциальной, имперической функции распределения, математическое ожидание, дисперсия, и среднее квадратическое отклонение.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 15.11.2010
Размер файла 397,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

5

Задание № 1

В урне 5 белых и 4 черных шара. Из нее вынимают подряд два ряда шара. Найти вероятность того, что оба шара белые.

Решение:

Всего возможно . (это общее количество возможных элементарных исходов испытания). Интересующая нас событие заключается в том, что данная выборка содержит 2 белых шара, подсчитаем число благоприятствующих этому событию вариантов:

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

По формуле полной вероятности имеем:

Задание № 2

Имеется 2 урны: в первой 3 белых и 4 черных шара, во второй 5 белых и 7 черных. Из наудачу выбранной урны берут один шар. Найти вероятность того, что этот шар будет белым.

Решение:

Пусть событие А сводится к тому, что шар достали (из одной из урн). Предположим, что:

1) Н1 = шар достали из урны первой

2) Н2 = шар достали из урны второй

Вероятность того, что шар достали из первой урны Р (Н1) = 1/3, а вероятность того, что шар достали из второй урны Р (Н1) = 1/5. Согласно условию задачи в случае Н1 шар достанут с вероятностью: Р (А/Н1) = 3/7, а в случае Н2 - с вероятностью Р (А/Н2) = 5/12. По формуле полной вероятности имеем:

Р (А) = Р (Н1) * Р (А/Н1) + Р (Н2) * Р (А/Н2),

Задание № 3

Дана вероятность p появления события А в серии из n независимых испытаний. Найти вероятность того, что в этих испытаниях событие А появится:

р

n

к

к1

к2

0,3

6

3

1

3

а) равно к раз;

б) не менее к раз;

в) не менее к1 раз и не более к2 раз.

Решение:

В нашем случае р = 0,3, тогда g = 1 - 0,3 = 0,7, n = 6 и к = 3, отсюда вероятность появления события в серии из 6 независимых испытаний:

а) n = 6, к = 3, р = 0,3, тогда g = 0,7. По формуле Бернуле имеем:

=

б) вероятность появления события а не менее 3 раз из независимых испытаний предположим, что событие должно повторяться более 3 раз: Рn (к1;n) = Ф (в) - Ф (а),

Р6 (1; 6) = Ф (3,74) - (+Ф (-0,71)) = 0,6233 + 0,2528 = 0,8761

Так как рассматриваемое событие появляется не менее 3 раз, имеем:

1 - Рn1; n) = = 1 - 0,8761 = 0,1449

в) вероятность того, что событие появится в серии из 6 независимых испытаний не менее 1 раза и не более 3 раз можно найти по Формуле Лапласа:

Рn (к1; к2) = Ф (в) - Ф (а),

Р6 (1; 3) = Ф (1,07) - (+Ф (-0,71)) = 0,3103 + 0,2528 = 0,5631

Задание № 4

х

-2

-1

0

3

р

0,2

0,5

0,1

0,2

Таблицей задан закон распределения дискретной случайной, величины Х. Найти математическое ожидание М (х), D (х) и среднее квадратическое отклонение у (х). Закон распределения.

Решение:

М (х) = -2 * 0.2 + (-1) * 0,5 + 0 * 0,1 + 3 * 0,2 = -0,4 - 0,5 + 0 + 0,6 = 0,5

D (х) = М (х2) - (М (х))2 , найдем х2;

х

-2

-1

0

3

р

0,2

0,5

0,1

0,2

М (х2) = 4 * 0,2 + 1 * 0,5 + 0 * 0,1 + 9 * 0,2 = 0,8 + 0,5 + 0 + 1,8 = 3,1, тогда D (х) = = 3,1 + (0,5)2 = 3,1 - 0,25 = 2,85.

Среднее квадратическое отклонение:

Задание № 5

Дана интегральная функция распределения случайная величина Х. Найти дифференциальную функцию распределения, математическое ожидание М (х), дисперсия D (х) и среднее квадратическое отклонение у (х).

Решение:

Среднее квадратическое отклонение равно:

Задание № 6

а

у

б

в

Д

11

3

14

15

1

Диаметры деталей распределены по нормальному закону. Среднее значение диаметра равно d мм, среднее квадратическое отклонение у мм. Найти вероятность того, что диаметр наудачу взятой детали будет больше, б мм и меньше в мм; вероятность того, что диаметр детали отклонится от стандартной длины не более, чем на Д мм.

Решение:

Пусть х - длина детали. Если случайная величина х распределена по нормальному закону, то вероятность ее попадания на отрезок [а; в].

=

Вероятность отклонения длины детали от ее математического ожидания а не больше, чем на d = 1 мм, очевидно, что есть вероятность того, что длина детали попадает в интервал [а - d; а + d] и потому вычисляется также с помощью функции Лапласа:

Задание № 7

Признак Х представлен дискретным выборочным распределением в виде таблицы выборочных значений (таблица 1). Требуется:

? составить интервальное распределение выборки;

? построить гистограмму относительных частот;

? перейти от составленного интервального распределения к точечному выборочному распределению, взяв за значение признака середины частичных интервалов;

? построить полигон относительных частот;

? найти эмпирическую функцию распределения и построить ее график;

? вычислить все точечные статистические оценки числовых характеристик признака: среднее х; выборочную дисперсию и исправленную выборочную дисперсию; выборочное среднее квадратическое отклонение и исправленное среднее квадратическое отклонение S;

? считая первый столбец таблицы 1 выборкой значений признака X, а второй столбец выборкой значений Y, оценить тесноту линейной корреляционной зависимости между признаками и составить выборочное уравнение прямой регрессии Y на X.

Таблица 1 Таблица выборочных значений

66,7

70,5

57,5

58,5

74,7

75,8

99,9

58,5

93,0

74,8

26,7

37,5

61,5

38,0

62,5

60,5

59,0

71,5

65,5

65,2

91,5

79,5

31,8

71,5

63,0

69,5

79,3

95,0

83,5

51,0

66,4

65,3

66,2

85,5

46,5

48,5

36,9

68,5

86,9

73,7

40,3

66,5

87,7

39,5

64,3

63,9

67,3

94,8

43,5

73,1

67,8

75,1

44,9

58,9

70,9

68,2

65,3

65,9

74,0

63,9

50,0

66,5

43,5

56,2

74,0

64,3

34,9

52,1

44,9

54,1

66,0

43,2

70,5

85,1

45,8

79,2

47,7

60,3

60,5

85,6

362,8

93,2

53,6

85,7

55,8

46,5

59,5

62,6

92,8

79,5

46,5

60,3

81,3

38,5

55,3

58,8

81,3

57,5

34,3

46,5

Решение:

1) определим максимальное и минимальное значение имеющихся значений: хmin = 26,7 хmax = 99,9

2) Выстроим в порядке возрастания, имеющиеся у нас значения (табл.2)

Таблица 2

26,7

31,8

34,3

34,9

36,9

37,5

38,0

38,5

39,5

40,3

43,2

43,5

43,5

44,9

44,9

45,8

46,5

46,5

46,5

46,5

47,7

48,5

50,0

51,0

52,1

53,6

54,1

55,3

55,8

56,2

57,5

57,5

58,5

58,5

58,8

58,9

59,0

59,5

60,3

60,3

60,5

60,5

61,5

62,5

62,6

62,8

63,0

63,9

63,9

64,3

64,3

65,2

65,3

65,3

65,5

65,9

66,0

66,2

66,4

66,5

66,5

66,7

67,3

67,8

68,2

68,5

69,5

70,5

70,5

70,9

71,5

73,1

73,7

74,0

74,0

74,7

74,8

75,1

75,8

79,2

79,3

79,3

79,5

81,3

81,3

83,5

85,1

85,5

85,6

85,7

86,9

87,7

91,5

92,8

93,0

93,2

94,8

95,0

99,9

3) Определим размах R: R = хmax - хmin = 99,9 - 26,7 = 73,2

Нижняя граница х0 = хmin - L / 2 = 26,7 - 10 / 2 = 21,7;

Верхняя граница хi = хmax + L / 2 = 99.9 + 10 / 2 = 104,9,

следовательно, у нас имеются интервалы: [21,7; 31,7); [31,7; 41,7); [41,7; 51,7); [51,7; 61,7); [61,7; 71,7); [71,7; 81,7); [81,7; 91,7); [91,7; 104,7].

5) wi = ni / n

х 1-i x i

[21,7;

31,7)

[31,7;

41,7)

[41,7;

51,7)

[51,7;

61,7)

[61,7;

71,7)

[71,7;

81,7)

[81,7;

91,7)

[91,7;

104,7]

ni

1

9

14

19

29

14

8

6

wi

0,01

0,09

0,14

0,19

0,29

0,14

0,08

0,06

Рис. 1. Гистограмма относительных частот

Перейдем от составленного интервального распределения к точечному выборочному распределению, взяв за значение признака середины частичных интервалов. Построим полигон относительных частот и найдем эмпирическую функцию распределения, построим ее график:

x i

26,7

36,7

46,7

56,7

66,7

76,7

86,7

98,3

ni

1

9

14

19

29

14

8

6

wi

0,01

0,09

0,14

0,19

0,29

0,14

0,08

0,06

Рис. 2. График интервального распределения.

Рис. 3. График эмпирической функции распределения

= ? xi wi = ? xi wi

? xi wi = 26,7 * 0,01 + 36,7 * 0,09 + 46,7 * 0,14 + 56,7 * 0,19 + 66,7 * 0,29 + 76,7 * 0,14 + 86,7 *0,08 + 98,3 * 0,06 =26,71 + 3, 303 + 6,538 + 10,773 +

+ 19,343 + 10,738 + 6,936 + 5,898 = 90,2

= ? = = (26,7 - 90,2)2 * 0,01 +(36,7 - 90,2) 2 *0,09 + (46,7 - 90,2) 2 * 0,14 + (56,7 - 90,2) 2 * 0,19 + (66,7 - 90,2) 2 * 0,29 + (76,7 - 90,2) 2 *0,14 + (86,7 - 90,2) 2 * 0,08 + (98,3 - 90,2) 2 * 0,06 = 40,32 + 257,6 + 264,92 +213,23 + 160,15 + 25,52 + 0,98 + 3,94 = 966,66

Задание № 8

Даны среднее квадратическое отклонение у, выборочное среднее и объем выборки n нормального распределенного признака генеральной совокупности. Найти доверительные интервалы для оценки генеральной средней с заданной надежностью г.

у

n

г

7

112,4

26

0,95

Решение:

Доверительный интервал, в котором с вероятностью г будет находиться средний интервал совокупности) для нормального распределения случайной величины с известным квадратичным отклонением у, выборочной средней и объемом выборки n равен.

t - решение уравнения 2Ф (t) = г, Ф (t) - функция Лапласа. В нашем случае Ф (t) = = 0,475, следовательно, значение Ф (t) соответствует t = 2,13, тогда доверительный интервал будет равен:

.

В этом интервале с вероятностью г = 0,95, будет находиться средняя генеральной совокупности.

Задание № 9

Даны исправленное среднее квадратическое отклонение S, выборочное среднее и объем выборки n нормально распределенного признака генеральной совокупности. Пользуясь распределением Стьюдента, найти доверительные интервалы для оценки генеральной средней , с заданной надежностью г.

S

n

г

13

119.5

18

0,99

Решение:

Доверительный интервал, для нормального распределения случайной величины с известным квадратичным отклонением у, но с известным исправленным средним квадратичным отклонением S, выборочной средней и объемом выборки n и доверительной вероятностью г, имеет вид.

где tг = t (г; n) - коэффициенты Стьюдента, значения n = 18 и г = 0,99, tг = 2,39, то есть t (0,99; 18) = 2,39.

Тогда доверительный интервал:

В интервале (112,16; 126,84) с вероятностью г = 0,99 будет находиться средняя генеральной совокупности.

Задание № 10

При уровне значимости 0,05 проверить гипотезу о нормальном распределении генеральной совокупности, если известны эмпирические и теоретические частоты.

эмпирические частоты, ni

3

13

17

45

13

14

5

теоретические частоты, n'i

5

15

14

50

11

12

3

Решение:

В соответствии с критерием согласия х 2 (Пирсона) определим наблюдаемое значение критерия:

Таким образом, Хо2 = 2,91, по таблице критических точек распределения при уровне значимости d = 0,05 и числе степени свободы к = m - 3 = 7 - 3 = 4, где m - число различных вариантов выборки, находим: Хкр2.

Хкр2 = х2 (0,05; 4) = 8,0

Так как Хо2 < Хкр2, то нет оснований отвергать гипотезу о нормальном распределении генеральной совокупности.


Подобные документы

  • Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.

    контрольная работа [86,4 K], добавлен 26.02.2012

  • Среднее арифметическое (математическое ожидание). Дисперсия и среднеквадратическое отклонение случайной величины. Третий центральный момент и коэффициент асимметрии. Законы распределения. Построение гистограммы. Критерий Пирсона. Доверительный интервал.

    курсовая работа [327,1 K], добавлен 29.03.2013

  • Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.

    контрольная работа [36,5 K], добавлен 14.11.2010

  • Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.

    контрольная работа [87,2 K], добавлен 29.01.2014

  • Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.

    контрольная работа [59,7 K], добавлен 26.07.2010

  • Математическое ожидание дискретной случайной величины, его свойства и определение. Дисперсия и формула для ее вычисления. Среднее квадратическое отклонение. Ковариация и коэффициент корреляции. Коррелированные и некоррелированные случайные величины.

    курсовая работа [133,7 K], добавлен 05.06.2011

  • Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.

    контрольная работа [106,1 K], добавлен 23.06.2009

  • Система линейных уравнений. Векторная алгебра, линейные операции для векторов, векторное (линейное) пространство. Случайные события и величины, плотность распределения вероятности, математическое ожидание, дисперсия, среднее квадратическое отклонение.

    методичка [232,1 K], добавлен 18.05.2010

  • Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.

    контрольная работа [91,7 K], добавлен 15.11.2011

  • Понятие непрерывной случайной величины, её значения на числовых промежутках. Определение закона распределения, его функции. Плотность распределения числовых характеристик вероятности. Математическое ожидание, дисперсия и среднеквадратичное отклонение.

    лекция [575,9 K], добавлен 17.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.