Інтерполяція функцій. Поліноми Ньютона

Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.

Рубрика Математика
Предмет Математика
Вид контрольная работа
Язык украинский
Прислал(а) Incognito
Дата добавления 06.02.2014
Размер файла 75,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Суть інтерполяції - у відшуканні значень функції в деякій проміжній точці. Лінійна інтерполяція, в основі якої лежить наближення кривої на ділянці між заданими точками прямою, що проходить через ті ж точки. Інтерполяція за Лагранжем. Практична формула.

    презентация [92,6 K], добавлен 06.02.2014

  • Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа [481,0 K], добавлен 14.10.2013

  • Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.

    лабораторная работа [147,4 K], добавлен 16.11.2015

  • В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.

    контрольная работа [131,6 K], добавлен 05.01.2011

  • Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.

    реферат [140,2 K], добавлен 27.03.2012

  • Поняття нормованого простору: лінійний простір, оператор, безперервний та обмежений оператор. Простір функцій. Інтеграл Лебега-Стилтьеса. Інтерполяція в просторах сумуємих функцій. Теореми Марцинкевича та Рисса-Торина. Простір сумуємих послідовностей.

    курсовая работа [407,3 K], добавлен 16.01.2011

  • Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.

    курс лекций [871,5 K], добавлен 11.02.2012

  • Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.

    курсовая работа [434,5 K], добавлен 14.03.2014

  • Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.

    контрольная работа [207,3 K], добавлен 06.12.2014

  • Сутність інтерполяційних поліномів. Оцінка похибок інтерполяційних формул, їх застосування. Програма обчислення наближених значень функції у випадку, коли функція задана таблично, використовуючи інтерполяційні формули для рівновіддалених вузлів.

    курсовая работа [956,4 K], добавлен 29.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.