Методы снижения погрешности аппроксимирующих зависимостей
Методы снижения погрешности аппроксимирующих зависимостей на примере определения влажности нефти прибором "Ультрафлоу". Синтезирование математической модели для расчета влажности нефти на основе показаний датчиков доплеровского сдвига частоты и влажности.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 15.05.2014 |
Размер файла | 33,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Вид публикации: материалы доклада
УДК 515.126.2
методы снижения погрешности аппроксимирующих зависимостей
Techniques to reduce inaccuracy of approximating dependences
Качалов О.Б.,к.т.н.,доцент, Ямпурин Н.П. д.т.н., профессор
(Арзамасский политехнический институт (филиал) НГТУ им. Р.Е. Алексеева)
Kachalov O.B., Yampurin N.P.
(Arzamas Polytechnical Institute branch of R. E. Alexeev Nizhniy Novgorod State Technical University)
Аннотация
аппроксимирующий влажность нефть погрешность
Предложены два метода снижения погрешности аппроксимирующих зависимостей на примере определения влажности нефти прибором «Ультрафлоу». При этом синтезирована математическая модель для расчета влажности нефти на основе показаний датчиков доплеровского сдвига частоты, влажности нефти, газонасыщенности потока, давления и температуры. Первый метод снижения ошибки основан на поиске экстремума при построении экспериментальной зависимости средней абсолютной погрешности проверочных точек от средней абсолютной погрешности точек обучающей выборки. При втором методе снижение ошибки обусловлено изменением состава обучающей выборки при поступлении новых данных с датчиков системы в процессе нормальной эксплуатации нефтяной скважины. Разработанные методы могут быть использованы при калибровке датчиков, измерительных систем и комплексов в технике, экологии и медицине.
Abstract
The paper presents two techniques to reduce inaccuracy of approximating dependences by the example of calculating oil humidity with the device Ultraflow. Mathematical model for calculating oil humidity on the basis of sensor readings of Doppler frequency shift, oil humidity, gas saturation, pressure and temperature is given. The first technique relies on extremum seeking in plotting experimental dependence of absolute average error of test points from absolute average error of training sample points. The second technique provides inaccuracy reduction by changing training sample when getting new readings from system sensors in regular service condition of an oil-well. The methods presented in the paper can be used for calibrating sensors, measuring systems in technical equipment, ecology and medicine.
Повышение точности при использовании аппроксимирующих зависимостей позволяет существенно повысить эффективность технологических операций, при описании которых применяются эти зависимости. Например, повышение точности систем измерения в 1,5 раза при испытании ракетных двигателей позволило уменьшить количество испытаний более чем в 7 раз. Учитывая, что стоимость каждого испытания равна 100 тыс. долларов США, это дает ощутимый экономический эффект на практике [1].
Цель данной работы - показать возможность снижения погрешности проверочных точек (не участвовавших в построении модели) за счет
- нахождения минимума погрешности на экспериментальной кривой зависимости погрешности проверочных точек от средней абсолютной погрешности обучающих точек;
- использования переменной обучающей выборки.
Проиллюстрируем данный метод снижения погрешности на примере расчета влажности нефти на основе результатов калибровочных работ прибора «Ультрафлоу», проведенных сотрудниками Арзамасского приборостроительного завода им. П.И. Пландина.
В таблице 1 приведены значения экспериментальных точек обучающей выборки, а в таблице 2 - проверочной для основных параметров продукции нефтяной скважины.
Таблица 1
y |
x1 |
x2 |
x3 |
x4 |
x5 |
|
Влажность нефти, % |
Расход жидкости, м3 /сут |
Показание датчика влажности, дел. |
Доплеровский сдвиг частоты, Гц |
Показание датчика газо-насыщенности, дел. |
Отношение температуры к давлению, °С/МПа |
|
10.03 |
30 |
27385.45 |
1089.5 |
0 |
21.09/0.119 |
|
10.16 |
19.94 |
28831.06 |
2383.02 |
0.1084 |
20.8/0.116 |
|
10.06 |
20.50 |
25645.65 |
3763.86 |
0.2567 |
20.8/0.112 |
|
10.80 |
20.71 |
24590.56 |
5744.47 |
0.4577 |
21.2/0.108 |
|
10.09 |
30 |
24371.90 |
6290.46 |
0.4534 |
21.03/0.109 |
|
10.45 |
20.34 |
24593.65 |
6472.22 |
0.5537 |
21.2/0.108 |
|
9.94 |
30 |
24438.09 |
7117.15 |
0.5540 |
21.1/0.108 |
|
24.63 |
15 |
26132.24 |
7600.53 |
0.7559 |
20.6/0.1081 |
|
10.02 |
30 |
24503.45 |
8251.48 |
0.6405 |
20.9/0.1085 |
|
9.4 |
20.4 |
25010 |
10702 |
0.8538 |
19/0.105 |
|
9.1 |
20.6 |
24584.45 |
5739.17 |
0.4522 |
19.3/0.108 |
|
25 |
15.2 |
25990 |
7610.56 |
0.7561 |
19.6/1.08 |
|
25 |
29.8 |
26101.87 |
11401.87 |
0.8322 |
19.1/0.11 |
|
24 |
29.8 |
26107.65 |
13375.9 |
0.9008 |
19.3/0.12 |
Табл. 2
y |
x1 |
x2 |
x3 |
x4 |
x5 |
|
Влажность нефти, % |
Расход жидкости, м3 /сут |
Показание датчика влажности нефти, дел. |
Доплеровский сдвиг частоты, Гц |
Показание датчика газо-насыщенности, дел. |
Отношение температуры к давлению, °С/МПа |
|
11.7 |
20.59 |
24863.84 |
8976.31 |
0.7686 |
20.1/0.1088 |
|
24.74 |
15 |
26180.90 |
9501.82 |
0.8458 |
19.6/0.1076 |
|
24.70 |
15 |
26263.90 |
10721.28 |
0.9048 |
19.5/0.1082 |
|
10 |
20.19 |
25075.68 |
10744.39 |
0.8547 |
19.6/0.1089 |
|
25.12 |
30 |
26044.34 |
11427.64 |
0.8378 |
19.6/0.1084 |
|
10.71 |
20 |
25239.81 |
11773 |
0.9091 |
19.3/0.1090 |
|
25.02 |
30 |
26149.70 |
13370.72 |
0.9003 |
19.7/0.1092 |
Рассматривалась регрессионная модель вида
,
где y- влажность нефти, %;
x1 - расход жидкости, м3/сут;
x2 - показания датчика влажности нефти, дел.;
x3 - доплеровский сдвиг частоты, Гц;
x4 - показания датчика газонасыщенности, дел.;
x5 - отношение температуры к давлению, оС/МПа;
bij - коэффициенты регрессии.
Первый метод снижения погрешности основан на поиске экстремума при построении экспериментальной зависимости средней абсолютной погрешности проверочных точек от средней абсолютной погрешности точек обучающей выборки. Изменение средней абсолютной погрешности точек обучающей выборки проводилось за счет изменения числа точек в обучающей выборке.
При втором методе снижение погрешности обусловлено изменением состава обучающей выборки. При этом к основному ядру обучающей выборки присоединяется проверочная точка, для входных данных которой рассчитывается выходной показатель. Далее данная проверочная точка удаляется из обучающей выборки, а на ее место поступает следующая проверочная точка, для которой также рассчитывается выходной показатель и т.д.
Результаты расчетов погрешности для данных, приведенных в табл. 1 и 2, представлены на рисунке. Кривая, соответствующая ряду 1 показывает погрешности при постоянной обучающей выборке, а кривая, соответствующая данным ряда 2 - переменной обучающей выборке.
Как видно из приведенных кривых расчет влажности нефти необходимо проводить при такой средней абсолютной погрешности точек обучающей выборки, при которой имеет место минимум погрешности проверочных точек. При этом во всем диапазоне изменения средней абсолютной погрешности обучающих точек модель с переменной обучающей выборкой позволяет существенно снизить погрешность проверочных точек по сравнению с погрешностью при постоянной обучающей выборке.
Разработанные методы могут быть использованы:
- в расчетах при использовании регрессионных и нейросетевых моделей, а также в моделях самоорганизации;
- при калибровке датчиков, измерительных систем и комплексов в технике, экологии и медицине.
Список литературы
1. Заико Н.А. Комплексный подход к оценке погрешностей в задаче численного анализа данных натурного эксперимента: Автореф. дис…канд. техн. наук: 05.13.18/ Н.А. Заико. - Уфа, 2008. - 130 с.
Размещено на Allbest.ru
Подобные документы
Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.
курсовая работа [212,6 K], добавлен 11.12.2013Аппроксимация экспериментальных зависимостей методом наименьших квадратов. Правило Крамера. Графическое отображение точек экспериментальных данных. Аномалии и допустимые значения исходных данных. Листинг программы на С++. Результаты выполнения задания.
курсовая работа [166,7 K], добавлен 03.02.2011Изучение физического процесса как объекта моделирования. Описание констант и параметров, переменных, используемых в физическом процессе. Схема алгоритма математической модели, обеспечивающая вычисление заданных зависимостей физического процесса.
курсовая работа [434,5 K], добавлен 21.05.2022Задачи Коши и методы их решения. Общие понятия, сходимость явных способов типа Рунге-Кутты, практическая оценка погрешности приближенного решения. Автоматический выбор шага интегрирования, анализ брюсселятора и метод Зонневельда для его расчета.
курсовая работа [1,7 M], добавлен 03.11.2011Процесс нахождения значения физической величины опытным путем с помощью специальных технических средств. Упрощенное описание объекта измерения с помощью математических формул. Инструментальные и методические, основная и дополнительная погрешности.
презентация [729,1 K], добавлен 19.07.2015Сущность и математическая интерпретация абсолютной и относительной погрешности, способы записи величины вместе с ними. Понятие приближенного значения и погрешности приближения, направления анализа данных категорий. Правило округления десятичных дробей.
реферат [77,9 K], добавлен 13.09.2014Оптимизация управления потоком заявок в сетях массового обслуживания. Методы установления зависимостей между характером требований, числом каналов обслуживания, их производительностью и эффективностью. Теория графов; уравнение Колмогoрова, потоки событий.
контрольная работа [35,0 K], добавлен 01.07.2015Округление заданного числа до шести, пяти, четырех и трех знаков. Расчет погрешностей после каждого округления. Определение абсолютной и относительной погрешности вычисления значений функции u с учетом того, что все знаки операндов a, b, c и d верны.
контрольная работа [131,5 K], добавлен 02.05.2012Введение в численные методы, план построения вычислительного эксперимента. Точность вычислений, классификация погрешностей. Обзор методов численного интегрирования и дифференцирования, оценка апостериорной погрешности. Решение систем линейных уравнений.
методичка [7,0 M], добавлен 23.09.2010Разделенные разности и аппроксимация функций методом наименьших квадратов. Интерполяционные многочлены Лагранжа и Ньютона. Экспериментальные данные функциональной зависимости. Система уравнений для полинома. Графики аппроксимирующих многочленов.
реферат [139,0 K], добавлен 26.07.2009