Дослідження ліній другого порядку на псевдоевклідовій площині
Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.
Рубрика | Математика |
Предмет | Математика |
Вид | презентация |
Язык | украинский |
Прислал(а) | Виктория |
Дата добавления | 17.01.2015 |
Размер файла | 787,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Аналіз рівняння еліпсоїда, властивостей кривих і поверхонь другого порядку. Канонічне рівняння гіперболи за допомогою перетворень паралельного переносу й повороту координатних осей. Дослідження форми поверхні другого порядку методом перетину площинами.
курсовая работа [137,1 K], добавлен 27.12.2010Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.
курсовая работа [1,9 M], добавлен 13.11.2012Рівняння площини, яка проходить через задану точку перпендикулярно заданому вектору. Опис прямої лінії у просторі. Взаємне розташування прямої та площини. Поверхні другого порядку. Параметричні рівняння ліній. Приклади їх побудови в полярних координатах.
лекция [252,5 K], добавлен 30.04.2014Диференціальні рівняння другого порядку, які допускають пониження порядку. Лінійні диференціальні рівняння II порядку зі сталими коефіцієнтами. Метод варіації довільних сталих як загальний метод розв’язування та й приклад розв’язання задачі Коші.
лекция [202,1 K], добавлен 30.04.2014Теорія приведення загального рішення кривих і поверхонь другого порядку до канонічного виду в системі побудови графіків. Основні поняття (лінійний оператор, власний вектор і власне значення матриці, характеристичне рівняння, квадратична форма) і теореми.
курсовая работа [328,3 K], добавлен 13.11.2012Поняття приватного інтеграла. Побудова квадратичних двовимірних стаціонарних систем із приватним інтегралом у вигляді параболи, окружності або гіперболи. Умови існування в системи двох часток інтегралів. Якісне дослідження побудованих класів систем.
дипломная работа [290,0 K], добавлен 14.01.2011Поняття полярної системи координат, особливості завдання координат точки у ній. Формули переходу від декартової до полярної системи координат. Запис рівняння заданої кривої в декартовій системі координат з використанням вказаної формули переходу.
контрольная работа [2,4 M], добавлен 01.04.2012Пов’язування поточних координат лінії з заданими геометричними параметрами, одержання рівняння лінії. Визначення прямої на площині. Задачі на взаємне розташування прямих. Криві другого порядку: коло, еліпс, гіпербола та парабола, їх властивості.
презентация [239,4 K], добавлен 30.04.2014Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.
лекция [126,9 K], добавлен 30.04.2014Задача Коші і крайова задача. Двоточкова крайова задача для диференціального рівняння другого порядку. Види граничних умов. Метод, заснований на заміні розв’язку крайової задачі розв’язком декількох задач Коші. Розв'язування систем нелінійних рівнянь.
презентация [86,2 K], добавлен 06.02.2014