Теория вероятности

Определение числа исходов, благоприятствующих данному событию. Теорема умножения вероятностей и сложения несовместных событий, локальная теорема Лапласа. Расчет среднеквадратического отклонения величин. Несмещенная оценка генеральной средней и дисперсии.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 31.01.2011
Размер файла 91,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

КОНТРОЛЬНАЯ РАБОТА

на тему «Теория вероятности»

по предмету «Математика»

Задание 1

Общее число возможных элементарных методов равно числу сочетаний из 10 по 5:

.

Подсчитываем число исходов, благоприятствующих нашему событию. Среди 3-х женщин две женщины могут быть выбраны способами; при этом остальные 5-2=3 людей должны быть мужчинами. Взять же 3 мужчины из 7 можно способами. Следовательно, число исходов благоприятствующих нашему событию:

.

Искомая вероятность равна:

.

Задание 2

.

Возможны следующие три случая:

А - среди трех студентов посетивших библиотеку первый заказал учебник по теории вероятностей, а два других не заказали;

В - второй студент заказал учебник по теории вероятностей, а первый и второй нет.

Вероятность каждого из этих событий по теореме умножения равны:

;

;

.

Искомая вероятность по теореме сложения несовместных событий:

.

Поэтому: .

Чтобы нити оказались одного цвета должны выполниться следующие события:

А - вынуть две нити красного цвета;

В - вынуть две нити белого цвета.

Вероятность каждого из этих событий по теореме умножения вероятностей будут:

;

.

Искомая вероятность по теореме сложения вероятностей: .

Задание 3

.

I - 4б; 6кр; II - 5б; 10кр

Обозначим события А - выбранный шар белый. Можно сделать два предложения:

- белый шар выбран из 1-го ящика

- белый шар выбран из 2-го ящика, так как ящик выбирают на удачу, то:

.

Условная вероятность того, что шар будет белым и извлечен он из первого ящика будет:

.

Вероятность того, что белый шар будет извлечен из второго ящика:

.

Формула полной вероятности:

.

Тогда вероятность того, что наугад взятый шар будет белым:

.

Задание 4

Воспользуемся локальной теоремой Лапласа:

;

;

.

В нашем случае n=600; k=25; P=0,05; q=0,95.

.

Так как функция - четная, то по таблице находим:

.

Тогда .

Задание 5

x

20

25

30

35

40

P

0,2

0,3

0,2

0,1

0,2

.

;

;

;

.

Начальный момент первого порядка: .

Аналогично: .

.

Находим центральные моменты по формулам:

;

;

.

Следовательно:

; ; .

Многоугольник распределения

Задание 6

Распределение Х и распределение Y

Xi

4

9

12

Yi

6

7

Pi

0,36

0,24

0,4

Pi

0,65

0,35

;

.

;

;

;

;

;

.

Коэффициент коррекции находим по формуле:

,

где: Kxy - корелляционный момент связи случайных величин X и Y; - среднеквадратические отклонения величин X и Y.

.

Тогда:

;

;

.

.

Задание 7

; .

;

.

Задание 8

Распределение Х и распределение Y

Xi

1

3

5

Yi

12

13

15

Pi

0,1

0,7

0,2

Pi

0,5

0,1

0,4

x1=1; x2=3; x3=5; y1=12; y2=13; y3=15; x1+ y1=13; x1+ y2=14; x1+ y3=16;

x2+ y1=15; x2+ y2=16; x2+ y3=18; x3+ y1=17; x3+ y2=18; x3+ y3=20;

Обозначим xi + yj=7, тогда имеем следующие значения z:

z1=13; z2=14; z3=15; z4=16; z5=17; z6=18; z7=20.

Соответствующие вероятности будут:

;

;

;

;

;

;

.

Искомое распределение

x+y

13

14

15

16

17

18

20

P

0,04

0,06

0,12

0,28

0,04

0,36

0,10

Контроль:

0,04+0,06+0,12+0,28+0,04+0,36+0,1=1.

Задание 9

Xi

2

4

6

8

10

12

14

16

ni

1

2

3

4

5

10

6

5

Находим значение эмпирической функции.

Вычисления выполняем в таблице.

Таблица вычислений

Xi

2

4

6

8

10

12

14

16

Частота

0,028

0,056

0,083

0,111

0,139

0,278

0,166

0,139

0,028

0,084

0,167

0,278

0,417

0,695

0,861

1,00

График эмпирической функции

Несмещенной оценкой генеральной средней является выборочная средняя:

.

Тогда:

.

Несмещенную оценку генеральной дисперсии найдем по формуле:

Последовательно находим:

;

;

;

.

Модой называют варианту, имеющую наибольшую частоту.

.

Медиана:

.

Размах варьирования:

R=16-2=14.

Из соотношения находим и t=1,96.

Находим точность оценки по формуле:

.

Тогда:

.

Доверительный интервал таков: ().


Подобные документы

  • Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.

    методичка [96,6 K], добавлен 25.12.2010

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.

    презентация [77,5 K], добавлен 01.11.2013

  • Примеры пространства элементарных событий. Вероятность появления одного из двух несовместных событий. Функция распределения F(x,y) системы случайных величин. Расчет математического ожидания и дисперсии. Закон генеральной совокупности и его параметры.

    контрольная работа [178,1 K], добавлен 15.06.2012

  • Типы событий и их общая характеристика: достоверные, невозможные и случайные. Вероятность как количественная характеристика степени возможности наступления события, теорема их сложения и умножения. Свойства случайных величин и их числовые характеристики.

    презентация [2,1 M], добавлен 20.09.2014

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

  • Рассмотрение способов нахождения вероятностей происхождения событий при заданных условиях, плотности распределения, математического ожидания, дисперсии, среднеквадратического отклонения и построение доверительного интервала для истинной вероятности.

    контрольная работа [227,6 K], добавлен 28.04.2010

  • Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.

    контрольная работа [106,1 K], добавлен 23.06.2009

  • Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.

    контрольная работа [344,8 K], добавлен 31.10.2013

  • Применение классического определения вероятности для нахождения среди определенного количества деталей заданных комбинаций. Определение вероятности обращения пассажира в первую кассу. Использование локальной теоремы Муавра-Лапласа для оценки отклонения.

    контрольная работа [136,0 K], добавлен 23.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.