Теория вероятности
Определение числа исходов, благоприятствующих данному событию. Теорема умножения вероятностей и сложения несовместных событий, локальная теорема Лапласа. Расчет среднеквадратического отклонения величин. Несмещенная оценка генеральной средней и дисперсии.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 31.01.2011 |
Размер файла | 91,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
КОНТРОЛЬНАЯ РАБОТА
на тему «Теория вероятности»
по предмету «Математика»
Задание 1
Общее число возможных элементарных методов равно числу сочетаний из 10 по 5:
.
Подсчитываем число исходов, благоприятствующих нашему событию. Среди 3-х женщин две женщины могут быть выбраны способами; при этом остальные 5-2=3 людей должны быть мужчинами. Взять же 3 мужчины из 7 можно способами. Следовательно, число исходов благоприятствующих нашему событию:
.
Искомая вероятность равна:
.
Задание 2
.
Возможны следующие три случая:
А - среди трех студентов посетивших библиотеку первый заказал учебник по теории вероятностей, а два других не заказали;
В - второй студент заказал учебник по теории вероятностей, а первый и второй нет.
Вероятность каждого из этих событий по теореме умножения равны:
;
;
.
Искомая вероятность по теореме сложения несовместных событий:
.
Поэтому: .
Чтобы нити оказались одного цвета должны выполниться следующие события:
А - вынуть две нити красного цвета;
В - вынуть две нити белого цвета.
Вероятность каждого из этих событий по теореме умножения вероятностей будут:
;
.
Искомая вероятность по теореме сложения вероятностей: .
Задание 3
.
I - 4б; 6кр; II - 5б; 10кр
Обозначим события А - выбранный шар белый. Можно сделать два предложения:
- белый шар выбран из 1-го ящика
- белый шар выбран из 2-го ящика, так как ящик выбирают на удачу, то:
.
Условная вероятность того, что шар будет белым и извлечен он из первого ящика будет:
.
Вероятность того, что белый шар будет извлечен из второго ящика:
.
Формула полной вероятности:
.
Тогда вероятность того, что наугад взятый шар будет белым:
.
Задание 4
Воспользуемся локальной теоремой Лапласа:
;
;
.
В нашем случае n=600; k=25; P=0,05; q=0,95.
.
Так как функция - четная, то по таблице находим:
.
Тогда .
Задание 5
x |
20 |
25 |
30 |
35 |
40 |
|
P |
0,2 |
0,3 |
0,2 |
0,1 |
0,2 |
.
;
;
;
.
Начальный момент первого порядка: .
Аналогично: .
.
Находим центральные моменты по формулам:
;
;
.
Следовательно:
; ; .
Многоугольник распределения
Задание 6
Распределение Х и распределение Y
Xi |
4 |
9 |
12 |
Yi |
6 |
7 |
||
Pi |
0,36 |
0,24 |
0,4 |
Pi |
0,65 |
0,35 |
;
.
;
;
;
;
;
.
Коэффициент коррекции находим по формуле:
,
где: Kxy - корелляционный момент связи случайных величин X и Y; - среднеквадратические отклонения величин X и Y.
.
Тогда:
;
;
.
.
Задание 7
; .
;
.
Задание 8
Распределение Х и распределение Y
Xi |
1 |
3 |
5 |
Yi |
12 |
13 |
15 |
||
Pi |
0,1 |
0,7 |
0,2 |
Pi |
0,5 |
0,1 |
0,4 |
x1=1; x2=3; x3=5; y1=12; y2=13; y3=15; x1+ y1=13; x1+ y2=14; x1+ y3=16;
x2+ y1=15; x2+ y2=16; x2+ y3=18; x3+ y1=17; x3+ y2=18; x3+ y3=20;
Обозначим xi + yj=7, тогда имеем следующие значения z:
z1=13; z2=14; z3=15; z4=16; z5=17; z6=18; z7=20.
Соответствующие вероятности будут:
;
;
;
;
;
;
.
Искомое распределение
x+y |
13 |
14 |
15 |
16 |
17 |
18 |
20 |
|
P |
0,04 |
0,06 |
0,12 |
0,28 |
0,04 |
0,36 |
0,10 |
Контроль:
0,04+0,06+0,12+0,28+0,04+0,36+0,1=1.
Задание 9
Xi |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
|
ni |
1 |
2 |
3 |
4 |
5 |
10 |
6 |
5 |
Находим значение эмпирической функции.
Вычисления выполняем в таблице.
Таблица вычислений
Xi |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
|
Частота |
0,028 |
0,056 |
0,083 |
0,111 |
0,139 |
0,278 |
0,166 |
0,139 |
|
0,028 |
0,084 |
0,167 |
0,278 |
0,417 |
0,695 |
0,861 |
1,00 |
График эмпирической функции
Несмещенной оценкой генеральной средней является выборочная средняя:
.
Тогда:
.
Несмещенную оценку генеральной дисперсии найдем по формуле:
Последовательно находим:
;
;
;
.
Модой называют варианту, имеющую наибольшую частоту.
.
Медиана:
.
Размах варьирования:
R=16-2=14.
Из соотношения находим и t=1,96.
Находим точность оценки по формуле:
.
Тогда:
.
Доверительный интервал таков: ().
Подобные документы
Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.
методичка [96,6 K], добавлен 25.12.2010Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.
презентация [77,5 K], добавлен 01.11.2013Примеры пространства элементарных событий. Вероятность появления одного из двух несовместных событий. Функция распределения F(x,y) системы случайных величин. Расчет математического ожидания и дисперсии. Закон генеральной совокупности и его параметры.
контрольная работа [178,1 K], добавлен 15.06.2012Типы событий и их общая характеристика: достоверные, невозможные и случайные. Вероятность как количественная характеристика степени возможности наступления события, теорема их сложения и умножения. Свойства случайных величин и их числовые характеристики.
презентация [2,1 M], добавлен 20.09.2014Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.
контрольная работа [98,1 K], добавлен 15.06.2012Рассмотрение способов нахождения вероятностей происхождения событий при заданных условиях, плотности распределения, математического ожидания, дисперсии, среднеквадратического отклонения и построение доверительного интервала для истинной вероятности.
контрольная работа [227,6 K], добавлен 28.04.2010Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.
контрольная работа [106,1 K], добавлен 23.06.2009Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.
контрольная работа [344,8 K], добавлен 31.10.2013Применение классического определения вероятности для нахождения среди определенного количества деталей заданных комбинаций. Определение вероятности обращения пассажира в первую кассу. Использование локальной теоремы Муавра-Лапласа для оценки отклонения.
контрольная работа [136,0 K], добавлен 23.11.2014