Функция Дирихле и ее свойства
Описание сущности функции, которая была введена немецким математиком П.В. Дирихле как пример функции, свободной от аналитического задания значения. Характеристика и описание ряда ее свойств и области определения методами математического анализа.
Рубрика | Математика |
Предмет | Математический анализ |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Виктория |
Дата добавления | 23.11.2011 |
Размер файла | 44,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Характеры и L-функции Дирихле, функциональное уравнение. Аналитическое продолжение L-функции Дирихле на комплексную плоскость; тривиальные и нетривиальные нули. Теорема Вейерштрасса о разложении в произведение целых функций. Обобщенная гипотеза Римана.
реферат [573,1 K], добавлен 15.06.2011Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.
курсовая работа [214,2 K], добавлен 12.08.2009Рассмотрение примеров задач и теорем, доказываемых при помощи контрпримера. Применение терминов "производная" и "дифференцируемая функция". Построение немецким математиком Вейерштрассом первого примера непрерывной нигде не дифференцируемой функции.
курсовая работа [400,6 K], добавлен 07.10.2013Простейшая разностная схема для задачи Дирихле: построение, аппроксимация и устойчивость. Описания метода установления. Анализ алгоритмов, реализующих метод установления: решение в виде конечного ряда Фурье, схема установления и переменных направлений.
курсовая работа [323,4 K], добавлен 25.11.2011Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.
практическая работа [332,7 K], добавлен 28.01.2014Определение условий сходимости положительного ряда и описание свойств гармонических рядов Дирихле. Изучение теорем сравнения рядов и описание схемы Куммера для вывода из нее признаков сравнения ряда. Вывод признаков сравнения Даламбера, Раабе и Бертрана.
курсовая работа [263,6 K], добавлен 14.06.2015Построение графика непрерывной функции. Определение множителя Лагранжа. Критические точки - значения аргумента из области определения функции, при которых производная функции обращается в нуль. Наибольшее и наименьшее значения функции на отрезке.
контрольная работа [295,5 K], добавлен 24.03.2009Математическое представление, условия возрастания и убывания функции y=f(x); характеристика ее основных свойств - четности, монотонности, ограниченности и периодичности. Ознакомление с аналитическим, графическим и табличным способами задания функции.
презентация [108,2 K], добавлен 21.09.2013Общий обзор свойств функций, осмысление каждого свойства. Исследование функции на монотонность, ее наибольшее и наименьшее значения. Тестовое задание "Выпуклость функции". Примеры непрерывной функции D(f)=[-4; 6] и прерывной функции D(f)=(1; 7).
презентация [360,5 K], добавлен 13.01.2015Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа [132,2 K], добавлен 25.11.2011