Метод простых итераций с попеременно чередующимся шагом

Особенности ариорного выбора числа итераций в методе простых итераций с попеременно чередующимся шагом для уравнений I рода. Анализ и постановка задачи. Сходимость при точной правой части. Сходимость при приближенной правой части. Оценка погрешности.

Рубрика Математика
Предмет Математика
Вид контрольная работа
Язык русский
Прислал(а) Пашкевич Анатолий
Дата добавления 28.05.2010
Размер файла 187,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Априорный выбор числа итераций в методе простых с попеременно чередующимся шагом. Доказательство сходимости процесса в исходной норме гильбертова пространства. Оценка погрешности и решение неравенств. Случай неединственного решения с попеременной.

    дипломная работа [695,6 K], добавлен 17.02.2012

  • Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.

    реферат [183,7 K], добавлен 11.04.2014

  • Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.

    курсовая работа [911,6 K], добавлен 15.08.2012

  • Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.

    лабораторная работа [264,1 K], добавлен 24.09.2014

  • Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.

    контрольная работа [320,8 K], добавлен 13.03.2013

  • Анализ особенностей разработки вычислительной программы. Общая характеристика метода простых итераций. Знакомство с основными способами решения нелинейного алгебраического уравнения. Рассмотрение этапов решения уравнения методом половинного деления.

    лабораторная работа [463,7 K], добавлен 28.06.2013

  • Смысл метода Ньютона для решения нелинейных уравнений. Доказательства его модификаций: секущих, хорд, ложного положения, Стеффенсена, уточненного для случая кратного корня, для системы двух уравнений. Оценка качества метода по числу необходимых итераций.

    реферат [99,0 K], добавлен 07.04.2015

  • Задачи Коши и методы их решения. Общие понятия, сходимость явных способов типа Рунге-Кутты, практическая оценка погрешности приближенного решения. Автоматический выбор шага интегрирования, анализ брюсселятора и метод Зонневельда для его расчета.

    курсовая работа [1,7 M], добавлен 03.11.2011

  • Определение интервала сходимости ряда. Сходимость ряда на концах интервала по второму признаку сравнения положительных рядов и по признаку Лейбница. Решение дифференциальных уравнений по методу Бернулли. Методы нахождения неопределённого интеграла.

    контрольная работа [73,0 K], добавлен 24.04.2013

  • Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.

    курс лекций [871,5 K], добавлен 11.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.