Геометрические свойства кривых второго порядка
Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 12.01.2011 |
Размер файла | 133,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
14
Цель курсовой работы
Исследовать и изучить геометрические свойства кривых второго порядки (эллипса, гиперболы и параболы), представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершины, а также научиться строить графики данных кривых в канонической и прямоугольной декартовой системах координат.
Постановка задачи
Дано уравнение кривой второго порядка:
. (1)
Задание. Для данного уравнения кривой второго порядка с параметром :
I. Определить зависимость типа кривой от параметра с помощью инвариантов.
II. Привести уравнение кривой при к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.
III. Найти фокусы, директрисы, эксцентриситет и асимптоты (если они есть) данной кривой второго порядка.
IV. Получить уравнения канонических осей в общей системе координат.
V. Построить график кривой в канонической и общей системах координат.
Получение канонической системы координат. Построение графиков
I. Тип кривой второго порядка в зависимости от параметра
В прямоугольной декартовой системе координат кривая второго порядка задается в общем виде уравнением:
,
если хотя бы один из коэффициентов , , отличен от нуля.
Для уравнения кривой второго порядка (1) имеем:
Теперь определим тип данной нам кривой (1) с помощью инвариантов. Инварианты кривой второго порядка вычисляются по формулам:
;
;
.
Для данной кривой они равны:
1). Если , то уравнение кривой (1) определяет кривую параболического типа, но . Таким образом, если , то уравнение (1) определяет кривую параболического типа. При этом , то есть: если , то уравнение (1) определяет параболу.
2). Если, то данная кривая -- центральная. Следовательно, при данная кривая -- центральная.
· Если , то уравнение (1) определяет кривую эллиптического типа. Следовательно, если , то данная кривая есть кривая эллиптического типа. Но при этом . В соответствии с признаками кривых второго порядка получим: если, то уравнение (1) определяет эллипс.
· Если , то уравнение (1) определяет кривую гиперболического типа. Следовательно, если , то уравнение (1) определяет кривую гиперболического типа.
а) Если и , то уравнение (1) определяет две пересекающиеся прямые. Получим:
Следовательно, если , то уравнение (1) определяет две пересекающиеся прямые.
б) Если и , то данная кривая -- гипербола. Но при всех за исключением точки . Следовательно, если , то уравнение (1) определяет гиперболу.
Используя полученные результаты, построим таблицу:
Значение параметра в |
||||||
Тип кривой |
Эллипс |
Парабола |
Гипербола |
Две пересекающиеся прямые |
Гипербола |
II. Переход от общего уравнения кривой к каноническому
Рассмотрим теперь случай, когда, и исследуем данное уравнение кривой второго порядка с помощью инвариантов. Из вышеприведенной таблицы видим, что при уравнение (1) определяет гиперболу и принимает вид:
(2.1)
Приведем уравнение кривой (2.1) к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.
Мы установили, что данная кривая -- центральная, поэтому используем методику приведения к каноническому виду для уравнения центральной кривой. Совершим параллельный перенос начала координат в точку . При этом координаты произвольной точки плоскости в системе координат и координаты в новой системе координат связаны соотношениями
Подставляя эти выражения в уравнение (2.1), получим:
(2.2)
Раскрывая скобки и приводя подобные члены, получим:
(2.3)
В уравнении (2.3) коэффициенты при приравняем к нулю. Получим систему уравнений относительно
(2.4)
Решив систему (2.4), получим:
Центр кривой имеет координаты , . Поставим найденные значения в уравнение (2.3). В новой системе координат в уравнении (2.3) коэффициенты при равны нулю и уравнение примет вид
,
. (2.5)
Так как , то дальнейшее упрощение уравнения (2.5) мы достигаем при помощи поворота осей координат на угол . При повороте осей координат на угол координаты произвольной точки плоскости в системе координат и координаты в новой системе координат связаны соотношениями
(2.6)
Подставляя (2.6) в уравнение (2.5), получим
Раскроем скобки и приведем подобные члены
Приводя подобные члены, получим уравнение
(2.7)
Теперь выберем такой угол , что в уравнении (2.7) коэффициент при произведении равен нулю. Получим уравнение относительно синуса и косинуса угла :
. (2.8)
Разделим правую и левую части данного уравнения почленно на . Мы можем это сделать, так как , потому что если (то есть ), то при подстановке в уравнение (2.8) получим, что и , что противоречит основному тригонометрическому тождеству . Получим уравнение
. (2.9)
Решая уравнение (2.9), получим
, .
Зная значение тангенса, можно вычислить значения синуса и косинуса по следующим формулам: , . Подставляя соответствующие значения тангенса, получаем:
Возьмем для определенности . Тогда соответствующие значения синуса и косинуса есть
, (2.10)
Подставляя (2.10) в уравнение (2.7), получаем:
и преобразовав данное уравнение, получим уравнение вида:
И, соответственно, уравнение
(2.11)
-- это каноническое уравнение исходной гиперболы.
III. Фокусы, директрисы, эксцентриситет и асимптоты кривой
Пусть и -- фокусы, -- эксцентриситет, -- центр, а -- директрисы данной гиперболы. Известно, что фокусы имеют координаты: , , где и . Для данного уравнения гиперболы (2.11) получаем, что , , и значит . Отсюда получаем , .
Эксцентриситет гиперболы (2.11)
.
Директрисы гиперболы задаются уравнениями: и . Подставляя найденные значения и , получаем:
Прямые и в канонической системе координат называются асимптотами гиперболы. Для данной гиперболы (2.11) асимптоты имеют вид:
IV. Уравнения осей гиперболы в общей системе координат
Теперь напишем уравнения осей новой системы в исходной системе координат .
Так как система -- каноническая для данной гиперболы, то ее центр находится в центре кривой -- , то есть оси и проходят через точку .
В пункте II было установлено, что угловой коэффициент оси .
Уравнение прямой, проходящей через данную точку с заданным угловым коэффициентом , имеет вид . Следовательно, ось в системе координат задана уравнением , или , где в роли точки выступает центр гиперболы точка .
Так как ось перпендикулярна оси , то ее угловой коэффициент . Следовательно, ось в системе координат задана уравнением , или .
V. Построение графиков гиперболы
Используя полученные в ходе выполнения задания данные, построим гиперболу (2.1) в исходной системе координат (см. рис. 1) и гиперболу (2.11) в канонической системе координат (см. рис. 2).
Рисунок 1.
Рисунок 2.
Вывод
Таким образом, из вышеприведенного решения видим, что с помощью инвариантов можно отследить тип кривой второго порядка с параметром , а используя параллельный перенос и поворот осей координат, можно привести кривую второго порядка от общего вида к каноническому.
Список используемой литературы
1. Л.В. Бобылева, Л.С. Брюхина. Линейная алгебра и аналитическая геометрия. Исследование кривых второго порядка.-- Дубна: Международный университет природы, общества и человека «Дубна», 2003.
2. Ильин В. А., Позняк Г. Д. Аналитическая геометрия. -- М.: Физматлит , 2002.
3. М.Я. Выгодский. Справочник по высшей математике.-- М: Наука, 1966.
4. А.В. Ефремов, Б.П. Демидович. Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа (Ч. 1). -- М.: Наука, 1993.
Подобные документы
Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.
курсовая работа [166,1 K], добавлен 17.05.2011Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.
курсовая работа [654,1 K], добавлен 28.09.2019Арифметическая теория квадратичных форм, их практическое применение в приведении уравнения кривой и поверхности второго порядка к каноническому виду. Самосопряженный оператор, его характеристика, использование и функции. Собственные числа и вектора.
курсовая работа [277,9 K], добавлен 28.11.2012Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.
курсовая работа [231,0 K], добавлен 28.06.2009Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.
презентация [301,4 K], добавлен 10.11.2014Система линейных уравнений. Общее и частные решения системы линейных уравнений. Нахождение векторного произведения. Приведение уравнения кривой второго порядка к каноническому виду. Исследование функции на непрерывность. Тригонометрическая форма числа.
контрольная работа [128,9 K], добавлен 26.02.2012Гипербола и ее свойства. Каноническая система координат. Понятие эксцентриситета, его зависимость от отношения мнимой и действительной полуосей. Уравнение директрис. Определение центра, оси, вершин, фокусов, эксцентриситета и асимптоты заданной гиперболы.
презентация [3,9 M], добавлен 02.06.2016По заданному уравнению кривой второго порядка определен вид кривой, фокусы и эксцентриситет. Составление уравнения параболы с вершиной в начале координат. Нахождение производных с помощью формул дифференцирования. Действия над комплексными числами.
контрольная работа [113,6 K], добавлен 16.10.2013Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.
контрольная работа [126,8 K], добавлен 08.05.2009Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.
курсовая работа [132,8 K], добавлен 28.06.2009